Metamath Proof Explorer


Theorem cmslssbn

Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn . (Contributed by AV, 8-Oct-2022)

Ref Expression
Hypotheses cmslssbn.x X=W𝑠U
cmslssbn.s S=LSubSpW
Assertion cmslssbn WNrmVecScalarWCMetSpXCMetSpUSXBan

Proof

Step Hyp Ref Expression
1 cmslssbn.x X=W𝑠U
2 cmslssbn.s S=LSubSpW
3 1 2 lssnvc WNrmVecUSXNrmVec
4 3 ad2ant2rl WNrmVecScalarWCMetSpXCMetSpUSXNrmVec
5 simprl WNrmVecScalarWCMetSpXCMetSpUSXCMetSp
6 eqid ScalarW=ScalarW
7 1 6 resssca USScalarW=ScalarX
8 7 ad2antll WNrmVecXCMetSpUSScalarW=ScalarX
9 8 eleq1d WNrmVecXCMetSpUSScalarWCMetSpScalarXCMetSp
10 9 biimpd WNrmVecXCMetSpUSScalarWCMetSpScalarXCMetSp
11 10 impancom WNrmVecScalarWCMetSpXCMetSpUSScalarXCMetSp
12 11 imp WNrmVecScalarWCMetSpXCMetSpUSScalarXCMetSp
13 eqid ScalarX=ScalarX
14 13 isbn XBanXNrmVecXCMetSpScalarXCMetSp
15 4 5 12 14 syl3anbrc WNrmVecScalarWCMetSpXCMetSpUSXBan