| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmslssbn.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | cmslssbn.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 | 1 2 | lssnvc | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmVec ) | 
						
							| 4 | 3 | ad2ant2rl | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp )  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  𝑋  ∈  NrmVec ) | 
						
							| 5 |  | simprl | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp )  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  𝑋  ∈  CMetSp ) | 
						
							| 6 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 7 | 1 6 | resssca | ⊢ ( 𝑈  ∈  𝑆  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 8 | 7 | ad2antll | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  ( ( Scalar ‘ 𝑊 )  ∈  CMetSp  ↔  ( Scalar ‘ 𝑋 )  ∈  CMetSp ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  ( ( Scalar ‘ 𝑊 )  ∈  CMetSp  →  ( Scalar ‘ 𝑋 )  ∈  CMetSp ) ) | 
						
							| 11 | 10 | impancom | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp )  →  ( ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  ∈  CMetSp ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp )  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  ( Scalar ‘ 𝑋 )  ∈  CMetSp ) | 
						
							| 13 |  | eqid | ⊢ ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑋 ) | 
						
							| 14 | 13 | isbn | ⊢ ( 𝑋  ∈  Ban  ↔  ( 𝑋  ∈  NrmVec  ∧  𝑋  ∈  CMetSp  ∧  ( Scalar ‘ 𝑋 )  ∈  CMetSp ) ) | 
						
							| 15 | 4 5 12 14 | syl3anbrc | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp )  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  𝑆 ) )  →  𝑋  ∈  Ban ) |