| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmslssbn.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | cmscsscms.s | ⊢ 𝑆  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 |  | cmsms | ⊢ ( 𝑊  ∈  CMetSp  →  𝑊  ∈  MetSp ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  →  𝑊  ∈  MetSp ) | 
						
							| 5 |  | ressms | ⊢ ( ( 𝑊  ∈  MetSp  ∧  𝑈  ∈  𝑆 )  →  ( 𝑊  ↾s  𝑈 )  ∈  MetSp ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( 𝑊  ↾s  𝑈 )  ∈  MetSp ) | 
						
							| 7 | 1 6 | eqeltrid | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  MetSp ) | 
						
							| 8 |  | cphlmod | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  LMod ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  →  𝑊  ∈  LMod ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑊  ∈  LMod ) | 
						
							| 11 |  | cphphl | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  PreHil ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  →  𝑊  ∈  PreHil ) | 
						
							| 13 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 14 | 2 13 | csslss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 15 | 12 14 | sylan | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 16 | 13 | lsssubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 17 | 10 15 16 | syl2anc | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 18 | 1 | subgbas | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑊 )  →  𝑈  =  ( Base ‘ 𝑋 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑈  =  ( Base ‘ 𝑋 ) ) | 
						
							| 20 |  | eqid | ⊢ ( TopOpen ‘ 𝑊 )  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 21 | 2 20 | csscld | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) | 
						
							| 22 | 21 | adantll | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) | 
						
							| 23 | 19 22 | eqeltrrd | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( Base ‘ 𝑋 )  ∈  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( dist ‘ 𝑊 )  =  ( dist ‘ 𝑊 ) | 
						
							| 25 | 1 24 | ressds | ⊢ ( 𝑈  ∈  𝑆  →  ( dist ‘ 𝑊 )  =  ( dist ‘ 𝑋 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( dist ‘ 𝑊 )  =  ( dist ‘ 𝑋 ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( dist ‘ 𝑋 )  =  ( dist ‘ 𝑊 ) ) | 
						
							| 28 | 27 | reseq1d | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  =  ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 29 | 19 17 | eqeltrrd | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( Base ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 31 | 30 | subgss | ⊢ ( ( Base ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝑊 )  →  ( Base ‘ 𝑋 )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( Base ‘ 𝑋 )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 33 |  | xpss12 | ⊢ ( ( ( Base ‘ 𝑋 )  ⊆  ( Base ‘ 𝑊 )  ∧  ( Base ‘ 𝑋 )  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) )  ⊆  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) | 
						
							| 34 | 32 32 33 | syl2anc | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) )  ⊆  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) | 
						
							| 35 | 34 | resabs1d | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  =  ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 36 | 28 35 | eqtr4d | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  =  ( ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) )  ↔  ( ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  =  ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) | 
						
							| 39 | 30 38 | cmscmet | ⊢ ( 𝑊  ∈  CMetSp  →  ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  →  ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 42 |  | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) )  =  ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 43 | 42 | cmetss | ⊢ ( ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑊 ) )  →  ( ( ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) )  ↔  ( Base ‘ 𝑋 )  ∈  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) ) ) ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) )  ↔  ( Base ‘ 𝑋 )  ∈  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) ) ) ) | 
						
							| 45 | 4 | adantr | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑊  ∈  MetSp ) | 
						
							| 46 | 20 30 38 | mstopn | ⊢ ( 𝑊  ∈  MetSp  →  ( TopOpen ‘ 𝑊 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( TopOpen ‘ 𝑊 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) )  =  ( TopOpen ‘ 𝑊 ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) )  =  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) | 
						
							| 50 | 49 | eleq2d | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( Base ‘ 𝑋 )  ∈  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) )  ↔  ( Base ‘ 𝑋 )  ∈  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) | 
						
							| 51 | 37 44 50 | 3bitrd | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) )  ↔  ( Base ‘ 𝑋 )  ∈  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) | 
						
							| 52 | 23 51 | mpbird | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) ) ) | 
						
							| 53 |  | eqid | ⊢ ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 ) | 
						
							| 54 |  | eqid | ⊢ ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  =  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ) | 
						
							| 55 | 53 54 | iscms | ⊢ ( 𝑋  ∈  CMetSp  ↔  ( 𝑋  ∈  MetSp  ∧  ( ( dist ‘ 𝑋 )  ↾  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) | 
						
							| 56 | 7 52 55 | sylanbrc | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  CMetSp ) |