Step |
Hyp |
Ref |
Expression |
1 |
|
cmslssbn.x |
β’ π = ( π βΎs π ) |
2 |
|
cmscsscms.s |
β’ π = ( ClSubSp β π ) |
3 |
|
bnnvc |
β’ ( π β Ban β π β NrmVec ) |
4 |
|
eqid |
β’ ( Scalar β π ) = ( Scalar β π ) |
5 |
4
|
bnsca |
β’ ( π β Ban β ( Scalar β π ) β CMetSp ) |
6 |
3 5
|
jca |
β’ ( π β Ban β ( π β NrmVec β§ ( Scalar β π ) β CMetSp ) ) |
7 |
6
|
ad2antrr |
β’ ( ( ( π β Ban β§ π β βPreHil ) β§ π β π ) β ( π β NrmVec β§ ( Scalar β π ) β CMetSp ) ) |
8 |
|
bncms |
β’ ( π β Ban β π β CMetSp ) |
9 |
1 2
|
cmscsscms |
β’ ( ( ( π β CMetSp β§ π β βPreHil ) β§ π β π ) β π β CMetSp ) |
10 |
8 9
|
sylanl1 |
β’ ( ( ( π β Ban β§ π β βPreHil ) β§ π β π ) β π β CMetSp ) |
11 |
|
cphphl |
β’ ( π β βPreHil β π β PreHil ) |
12 |
11
|
adantl |
β’ ( ( π β Ban β§ π β βPreHil ) β π β PreHil ) |
13 |
|
eqid |
β’ ( LSubSp β π ) = ( LSubSp β π ) |
14 |
2 13
|
csslss |
β’ ( ( π β PreHil β§ π β π ) β π β ( LSubSp β π ) ) |
15 |
12 14
|
sylan |
β’ ( ( ( π β Ban β§ π β βPreHil ) β§ π β π ) β π β ( LSubSp β π ) ) |
16 |
1 13
|
cmslssbn |
β’ ( ( ( π β NrmVec β§ ( Scalar β π ) β CMetSp ) β§ ( π β CMetSp β§ π β ( LSubSp β π ) ) ) β π β Ban ) |
17 |
7 10 15 16
|
syl12anc |
β’ ( ( ( π β Ban β§ π β βPreHil ) β§ π β π ) β π β Ban ) |