| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmslssbn.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
cmscsscms.s |
⊢ 𝑆 = ( ClSubSp ‘ 𝑊 ) |
| 3 |
|
bnnvc |
⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 5 |
4
|
bnsca |
⊢ ( 𝑊 ∈ Ban → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 6 |
3 5
|
jca |
⊢ ( 𝑊 ∈ Ban → ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ) |
| 8 |
|
bncms |
⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ CMetSp ) |
| 9 |
1 2
|
cmscsscms |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ CMetSp ) |
| 10 |
8 9
|
sylanl1 |
⊢ ( ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ CMetSp ) |
| 11 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) → 𝑊 ∈ PreHil ) |
| 13 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 14 |
2 13
|
csslss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 |
12 14
|
sylan |
⊢ ( ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 |
1 13
|
cmslssbn |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ) → 𝑋 ∈ Ban ) |
| 17 |
7 10 15 16
|
syl12anc |
⊢ ( ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Ban ) |