Step |
Hyp |
Ref |
Expression |
1 |
|
cssbn.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
cssbn.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
cssbn.d |
⊢ 𝐷 = ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑊 ∈ NrmVec ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
6 |
|
nvcnlm |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) |
7 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
8 |
6 7
|
syl |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp ) |
9 |
|
nvclmod |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ LMod ) |
10 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
12 |
1
|
subgngp |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑋 ∈ NrmGrp ) |
13 |
8 11 12
|
syl2an2r |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ NrmGrp ) |
16 |
|
ngpms |
⊢ ( 𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ MetSp ) |
18 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
19 |
1 18
|
ressds |
⊢ ( 𝑈 ∈ 𝑆 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
21 |
11
|
3adant2 |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
22 |
1
|
subgbas |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
24 |
23
|
sqxpeqd |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 × 𝑈 ) = ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) |
25 |
20 24
|
reseq12d |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
26 |
3 25
|
eqtrid |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝐷 = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
27 |
26
|
eqcomd |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = 𝐷 ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = 𝐷 ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
30 |
|
eqid |
⊢ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) |
31 |
29 30
|
ngpmet |
⊢ ( 𝑋 ∈ NrmGrp → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
32 |
14 31
|
syl |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
33 |
26 32
|
eqeltrd |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
35 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
36 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
37 |
36
|
iscmet2 |
⊢ ( 𝐷 ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ↔ ( 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) ) |
38 |
34 35 37
|
sylanbrc |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝐷 ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) |
39 |
28 38
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) |
40 |
29 30
|
iscms |
⊢ ( 𝑋 ∈ CMetSp ↔ ( 𝑋 ∈ MetSp ∧ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) |
41 |
17 39 40
|
sylanbrc |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ CMetSp ) |
42 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑈 ∈ 𝑆 ) |
43 |
1 2
|
cmslssbn |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ Ban ) |
44 |
4 5 41 42 43
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |