| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cssbn.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
cssbn.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
cssbn.d |
⊢ 𝐷 = ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) |
| 4 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑊 ∈ NrmVec ) |
| 5 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 6 |
|
nvcnlm |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) |
| 7 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp ) |
| 9 |
|
nvclmod |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ LMod ) |
| 10 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 11 |
9 10
|
sylan |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 12 |
1
|
subgngp |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑋 ∈ NrmGrp ) |
| 13 |
8 11 12
|
syl2an2r |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ NrmGrp ) |
| 16 |
|
ngpms |
⊢ ( 𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ MetSp ) |
| 18 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
| 19 |
1 18
|
ressds |
⊢ ( 𝑈 ∈ 𝑆 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
| 20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
| 21 |
11
|
3adant2 |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 |
1
|
subgbas |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 24 |
23
|
sqxpeqd |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 × 𝑈 ) = ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) |
| 25 |
20 24
|
reseq12d |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
| 26 |
3 25
|
eqtrid |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝐷 = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
| 27 |
26
|
eqcomd |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = 𝐷 ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = 𝐷 ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 30 |
|
eqid |
⊢ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) |
| 31 |
29 30
|
ngpmet |
⊢ ( 𝑋 ∈ NrmGrp → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 32 |
14 31
|
syl |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 33 |
26 32
|
eqeltrd |
⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 36 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 37 |
36
|
iscmet2 |
⊢ ( 𝐷 ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ↔ ( 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) ) |
| 38 |
34 35 37
|
sylanbrc |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝐷 ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) |
| 39 |
28 38
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) |
| 40 |
29 30
|
iscms |
⊢ ( 𝑋 ∈ CMetSp ↔ ( 𝑋 ∈ MetSp ∧ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) |
| 41 |
17 39 40
|
sylanbrc |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ CMetSp ) |
| 42 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑈 ∈ 𝑆 ) |
| 43 |
1 2
|
cmslssbn |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ Ban ) |
| 44 |
4 5 41 42 43
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |