Step |
Hyp |
Ref |
Expression |
1 |
|
cssbn.x |
|- X = ( W |`s U ) |
2 |
|
cssbn.s |
|- S = ( LSubSp ` W ) |
3 |
|
cssbn.d |
|- D = ( ( dist ` W ) |` ( U X. U ) ) |
4 |
|
simpl1 |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> W e. NrmVec ) |
5 |
|
simpl2 |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Scalar ` W ) e. CMetSp ) |
6 |
|
nvcnlm |
|- ( W e. NrmVec -> W e. NrmMod ) |
7 |
|
nlmngp |
|- ( W e. NrmMod -> W e. NrmGrp ) |
8 |
6 7
|
syl |
|- ( W e. NrmVec -> W e. NrmGrp ) |
9 |
|
nvclmod |
|- ( W e. NrmVec -> W e. LMod ) |
10 |
2
|
lsssubg |
|- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
11 |
9 10
|
sylan |
|- ( ( W e. NrmVec /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
12 |
1
|
subgngp |
|- ( ( W e. NrmGrp /\ U e. ( SubGrp ` W ) ) -> X e. NrmGrp ) |
13 |
8 11 12
|
syl2an2r |
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmGrp ) |
14 |
13
|
3adant2 |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> X e. NrmGrp ) |
15 |
14
|
adantr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. NrmGrp ) |
16 |
|
ngpms |
|- ( X e. NrmGrp -> X e. MetSp ) |
17 |
15 16
|
syl |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. MetSp ) |
18 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
19 |
1 18
|
ressds |
|- ( U e. S -> ( dist ` W ) = ( dist ` X ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( dist ` W ) = ( dist ` X ) ) |
21 |
11
|
3adant2 |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
22 |
1
|
subgbas |
|- ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) |
23 |
21 22
|
syl |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> U = ( Base ` X ) ) |
24 |
23
|
sqxpeqd |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( U X. U ) = ( ( Base ` X ) X. ( Base ` X ) ) ) |
25 |
20 24
|
reseq12d |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` W ) |` ( U X. U ) ) = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
26 |
3 25
|
eqtrid |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> D = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
27 |
26
|
eqcomd |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = D ) |
28 |
27
|
adantr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = D ) |
29 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
30 |
|
eqid |
|- ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) |
31 |
29 30
|
ngpmet |
|- ( X e. NrmGrp -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( Met ` ( Base ` X ) ) ) |
32 |
14 31
|
syl |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( Met ` ( Base ` X ) ) ) |
33 |
26 32
|
eqeltrd |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> D e. ( Met ` ( Base ` X ) ) ) |
34 |
33
|
adantr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> D e. ( Met ` ( Base ` X ) ) ) |
35 |
|
simpr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) |
36 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
37 |
36
|
iscmet2 |
|- ( D e. ( CMet ` ( Base ` X ) ) <-> ( D e. ( Met ` ( Base ` X ) ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) ) |
38 |
34 35 37
|
sylanbrc |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> D e. ( CMet ` ( Base ` X ) ) ) |
39 |
28 38
|
eqeltrd |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) |
40 |
29 30
|
iscms |
|- ( X e. CMetSp <-> ( X e. MetSp /\ ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) ) |
41 |
17 39 40
|
sylanbrc |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. CMetSp ) |
42 |
|
simpl3 |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> U e. S ) |
43 |
1 2
|
cmslssbn |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) |
44 |
4 5 41 42 43
|
syl22anc |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |