| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cssbn.x |
|- X = ( W |`s U ) |
| 2 |
|
cssbn.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
cssbn.d |
|- D = ( ( dist ` W ) |` ( U X. U ) ) |
| 4 |
|
simpl1 |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> W e. NrmVec ) |
| 5 |
|
simpl2 |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Scalar ` W ) e. CMetSp ) |
| 6 |
|
nvcnlm |
|- ( W e. NrmVec -> W e. NrmMod ) |
| 7 |
|
nlmngp |
|- ( W e. NrmMod -> W e. NrmGrp ) |
| 8 |
6 7
|
syl |
|- ( W e. NrmVec -> W e. NrmGrp ) |
| 9 |
|
nvclmod |
|- ( W e. NrmVec -> W e. LMod ) |
| 10 |
2
|
lsssubg |
|- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 11 |
9 10
|
sylan |
|- ( ( W e. NrmVec /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 12 |
1
|
subgngp |
|- ( ( W e. NrmGrp /\ U e. ( SubGrp ` W ) ) -> X e. NrmGrp ) |
| 13 |
8 11 12
|
syl2an2r |
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmGrp ) |
| 14 |
13
|
3adant2 |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> X e. NrmGrp ) |
| 15 |
14
|
adantr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. NrmGrp ) |
| 16 |
|
ngpms |
|- ( X e. NrmGrp -> X e. MetSp ) |
| 17 |
15 16
|
syl |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. MetSp ) |
| 18 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
| 19 |
1 18
|
ressds |
|- ( U e. S -> ( dist ` W ) = ( dist ` X ) ) |
| 20 |
19
|
3ad2ant3 |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( dist ` W ) = ( dist ` X ) ) |
| 21 |
11
|
3adant2 |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 22 |
1
|
subgbas |
|- ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) |
| 23 |
21 22
|
syl |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> U = ( Base ` X ) ) |
| 24 |
23
|
sqxpeqd |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( U X. U ) = ( ( Base ` X ) X. ( Base ` X ) ) ) |
| 25 |
20 24
|
reseq12d |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` W ) |` ( U X. U ) ) = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
| 26 |
3 25
|
eqtrid |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> D = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
| 27 |
26
|
eqcomd |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = D ) |
| 28 |
27
|
adantr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = D ) |
| 29 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
| 30 |
|
eqid |
|- ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) |
| 31 |
29 30
|
ngpmet |
|- ( X e. NrmGrp -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( Met ` ( Base ` X ) ) ) |
| 32 |
14 31
|
syl |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( Met ` ( Base ` X ) ) ) |
| 33 |
26 32
|
eqeltrd |
|- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> D e. ( Met ` ( Base ` X ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> D e. ( Met ` ( Base ` X ) ) ) |
| 35 |
|
simpr |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) |
| 36 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
| 37 |
36
|
iscmet2 |
|- ( D e. ( CMet ` ( Base ` X ) ) <-> ( D e. ( Met ` ( Base ` X ) ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) ) |
| 38 |
34 35 37
|
sylanbrc |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> D e. ( CMet ` ( Base ` X ) ) ) |
| 39 |
28 38
|
eqeltrd |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) |
| 40 |
29 30
|
iscms |
|- ( X e. CMetSp <-> ( X e. MetSp /\ ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) ) |
| 41 |
17 39 40
|
sylanbrc |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. CMetSp ) |
| 42 |
|
simpl3 |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> U e. S ) |
| 43 |
1 2
|
cmslssbn |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) |
| 44 |
4 5 41 42 43
|
syl22anc |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |