| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cssbn.x |
|
| 2 |
|
cssbn.s |
|
| 3 |
|
cssbn.d |
|
| 4 |
|
simpl1 |
|
| 5 |
|
simpl2 |
|
| 6 |
|
nvcnlm |
|
| 7 |
|
nlmngp |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
nvclmod |
|
| 10 |
2
|
lsssubg |
|
| 11 |
9 10
|
sylan |
|
| 12 |
1
|
subgngp |
|
| 13 |
8 11 12
|
syl2an2r |
|
| 14 |
13
|
3adant2 |
|
| 15 |
14
|
adantr |
|
| 16 |
|
ngpms |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
1 18
|
ressds |
|
| 20 |
19
|
3ad2ant3 |
|
| 21 |
11
|
3adant2 |
|
| 22 |
1
|
subgbas |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
sqxpeqd |
|
| 25 |
20 24
|
reseq12d |
|
| 26 |
3 25
|
eqtrid |
|
| 27 |
26
|
eqcomd |
|
| 28 |
27
|
adantr |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
29 30
|
ngpmet |
|
| 32 |
14 31
|
syl |
|
| 33 |
26 32
|
eqeltrd |
|
| 34 |
33
|
adantr |
|
| 35 |
|
simpr |
|
| 36 |
|
eqid |
|
| 37 |
36
|
iscmet2 |
|
| 38 |
34 35 37
|
sylanbrc |
|
| 39 |
28 38
|
eqeltrd |
|
| 40 |
29 30
|
iscms |
|
| 41 |
17 39 40
|
sylanbrc |
|
| 42 |
|
simpl3 |
|
| 43 |
1 2
|
cmslssbn |
|
| 44 |
4 5 41 42 43
|
syl22anc |
|