Metamath Proof Explorer


Theorem cssbn

Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn . (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)

Ref Expression
Hypotheses cssbn.x X = W 𝑠 U
cssbn.s S = LSubSp W
cssbn.d D = dist W U × U
Assertion cssbn W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D X Ban

Proof

Step Hyp Ref Expression
1 cssbn.x X = W 𝑠 U
2 cssbn.s S = LSubSp W
3 cssbn.d D = dist W U × U
4 simpl1 W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D W NrmVec
5 simpl2 W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D Scalar W CMetSp
6 nvcnlm W NrmVec W NrmMod
7 nlmngp W NrmMod W NrmGrp
8 6 7 syl W NrmVec W NrmGrp
9 nvclmod W NrmVec W LMod
10 2 lsssubg W LMod U S U SubGrp W
11 9 10 sylan W NrmVec U S U SubGrp W
12 1 subgngp W NrmGrp U SubGrp W X NrmGrp
13 8 11 12 syl2an2r W NrmVec U S X NrmGrp
14 13 3adant2 W NrmVec Scalar W CMetSp U S X NrmGrp
15 14 adantr W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D X NrmGrp
16 ngpms X NrmGrp X MetSp
17 15 16 syl W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D X MetSp
18 eqid dist W = dist W
19 1 18 ressds U S dist W = dist X
20 19 3ad2ant3 W NrmVec Scalar W CMetSp U S dist W = dist X
21 11 3adant2 W NrmVec Scalar W CMetSp U S U SubGrp W
22 1 subgbas U SubGrp W U = Base X
23 21 22 syl W NrmVec Scalar W CMetSp U S U = Base X
24 23 sqxpeqd W NrmVec Scalar W CMetSp U S U × U = Base X × Base X
25 20 24 reseq12d W NrmVec Scalar W CMetSp U S dist W U × U = dist X Base X × Base X
26 3 25 syl5eq W NrmVec Scalar W CMetSp U S D = dist X Base X × Base X
27 26 eqcomd W NrmVec Scalar W CMetSp U S dist X Base X × Base X = D
28 27 adantr W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D dist X Base X × Base X = D
29 eqid Base X = Base X
30 eqid dist X Base X × Base X = dist X Base X × Base X
31 29 30 ngpmet X NrmGrp dist X Base X × Base X Met Base X
32 14 31 syl W NrmVec Scalar W CMetSp U S dist X Base X × Base X Met Base X
33 26 32 eqeltrd W NrmVec Scalar W CMetSp U S D Met Base X
34 33 adantr W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D D Met Base X
35 simpr W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D Cau D dom t MetOpen D
36 eqid MetOpen D = MetOpen D
37 36 iscmet2 D CMet Base X D Met Base X Cau D dom t MetOpen D
38 34 35 37 sylanbrc W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D D CMet Base X
39 28 38 eqeltrd W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D dist X Base X × Base X CMet Base X
40 29 30 iscms X CMetSp X MetSp dist X Base X × Base X CMet Base X
41 17 39 40 sylanbrc W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D X CMetSp
42 simpl3 W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D U S
43 1 2 cmslssbn W NrmVec Scalar W CMetSp X CMetSp U S X Ban
44 4 5 41 42 43 syl22anc W NrmVec Scalar W CMetSp U S Cau D dom t MetOpen D X Ban