Metamath Proof Explorer


Theorem csschl

Description: A complete subspace of a complex pre-Hilbert space is a complex Hilbert space. Remarks: (a) In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. (b) This theorem does not hold for arbitrary subcomplex (pre-)Hilbert spaces, because the scalar field as restriction of the field of the complex numbers need not be closed. (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)

Ref Expression
Hypotheses cssbn.x X=W𝑠U
cssbn.s S=LSubSpW
cssbn.d D=distWU×U
csschl.c ScalarW=fld
Assertion csschl WCPreHilUSCauDdomtMetOpenDXℂHilScalarX=fld

Proof

Step Hyp Ref Expression
1 cssbn.x X=W𝑠U
2 cssbn.s S=LSubSpW
3 cssbn.d D=distWU×U
4 csschl.c ScalarW=fld
5 cphnvc WCPreHilWNrmVec
6 5 3ad2ant1 WCPreHilUSCauDdomtMetOpenDWNrmVec
7 cncms fldCMetSp
8 eleq1 ScalarW=fldScalarWCMetSpfldCMetSp
9 7 8 mpbiri ScalarW=fldScalarWCMetSp
10 4 9 mp1i WCPreHilUSCauDdomtMetOpenDScalarWCMetSp
11 simp2 WCPreHilUSCauDdomtMetOpenDUS
12 simp3 WCPreHilUSCauDdomtMetOpenDCauDdomtMetOpenD
13 1 2 3 cssbn WNrmVecScalarWCMetSpUSCauDdomtMetOpenDXBan
14 6 10 11 12 13 syl31anc WCPreHilUSCauDdomtMetOpenDXBan
15 1 2 cphssphl WCPreHilUSXBanXℂHil
16 14 15 syld3an3 WCPreHilUSCauDdomtMetOpenDXℂHil
17 eqid ScalarW=ScalarW
18 1 17 resssca USScalarW=ScalarX
19 18 4 eqtr3di USScalarX=fld
20 19 3ad2ant2 WCPreHilUSCauDdomtMetOpenDScalarX=fld
21 16 20 jca WCPreHilUSCauDdomtMetOpenDXℂHilScalarX=fld