| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmslssbn.x |
|- X = ( W |`s U ) |
| 2 |
|
cmscsscms.s |
|- S = ( ClSubSp ` W ) |
| 3 |
|
bnnvc |
|- ( W e. Ban -> W e. NrmVec ) |
| 4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 5 |
4
|
bnsca |
|- ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) |
| 6 |
3 5
|
jca |
|- ( W e. Ban -> ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) ) |
| 8 |
|
bncms |
|- ( W e. Ban -> W e. CMetSp ) |
| 9 |
1 2
|
cmscsscms |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> X e. CMetSp ) |
| 10 |
8 9
|
sylanl1 |
|- ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> X e. CMetSp ) |
| 11 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
| 12 |
11
|
adantl |
|- ( ( W e. Ban /\ W e. CPreHil ) -> W e. PreHil ) |
| 13 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 14 |
2 13
|
csslss |
|- ( ( W e. PreHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
| 15 |
12 14
|
sylan |
|- ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
| 16 |
1 13
|
cmslssbn |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. ( LSubSp ` W ) ) ) -> X e. Ban ) |
| 17 |
7 10 15 16
|
syl12anc |
|- ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> X e. Ban ) |