Metamath Proof Explorer


Theorem cplgr0v

Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypothesis cplgr0v.v V=VtxG
Assertion cplgr0v GWV=GComplGraph

Proof

Step Hyp Ref Expression
1 cplgr0v.v V=VtxG
2 rzal V=vVvUnivVtxG
3 2 adantl GWV=vVvUnivVtxG
4 1 iscplgr GWGComplGraphvVvUnivVtxG
5 4 adantr GWV=GComplGraphvVvUnivVtxG
6 3 5 mpbird GWV=GComplGraph