Metamath Proof Explorer


Theorem cpm2mfval

Description: Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019)

Ref Expression
Hypotheses cpm2mfval.i I=NcPolyMatToMatR
cpm2mfval.s S=NConstPolyMatR
Assertion cpm2mfval NFinRVI=mSxN,yNcoe1xmy0

Proof

Step Hyp Ref Expression
1 cpm2mfval.i I=NcPolyMatToMatR
2 cpm2mfval.s S=NConstPolyMatR
3 df-cpmat2mat cPolyMatToMat=nFin,rVmnConstPolyMatrxn,yncoe1xmy0
4 3 a1i NFinRVcPolyMatToMat=nFin,rVmnConstPolyMatrxn,yncoe1xmy0
5 oveq12 n=Nr=RnConstPolyMatr=NConstPolyMatR
6 5 2 eqtr4di n=Nr=RnConstPolyMatr=S
7 simpl n=Nr=Rn=N
8 eqidd n=Nr=Rcoe1xmy0=coe1xmy0
9 7 7 8 mpoeq123dv n=Nr=Rxn,yncoe1xmy0=xN,yNcoe1xmy0
10 6 9 mpteq12dv n=Nr=RmnConstPolyMatrxn,yncoe1xmy0=mSxN,yNcoe1xmy0
11 10 adantl NFinRVn=Nr=RmnConstPolyMatrxn,yncoe1xmy0=mSxN,yNcoe1xmy0
12 simpl NFinRVNFin
13 elex RVRV
14 13 adantl NFinRVRV
15 2 ovexi SV
16 mptexg SVmSxN,yNcoe1xmy0V
17 15 16 mp1i NFinRVmSxN,yNcoe1xmy0V
18 4 11 12 14 17 ovmpod NFinRVNcPolyMatToMatR=mSxN,yNcoe1xmy0
19 1 18 eqtrid NFinRVI=mSxN,yNcoe1xmy0