Metamath Proof Explorer


Theorem crctcshlem3

Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)

Ref Expression
Hypotheses crctcsh.v V=VtxG
crctcsh.i I=iEdgG
crctcsh.d φFCircuitsGP
crctcsh.n N=F
crctcsh.s φS0..^N
crctcsh.h H=FcyclShiftS
crctcsh.q Q=x0NifxNSPx+SPx+S-N
Assertion crctcshlem3 φGVHVQV

Proof

Step Hyp Ref Expression
1 crctcsh.v V=VtxG
2 crctcsh.i I=iEdgG
3 crctcsh.d φFCircuitsGP
4 crctcsh.n N=F
5 crctcsh.s φS0..^N
6 crctcsh.h H=FcyclShiftS
7 crctcsh.q Q=x0NifxNSPx+SPx+S-N
8 crctistrl FCircuitsGPFTrailsGP
9 trliswlk FTrailsGPFWalksGP
10 wlkv FWalksGPGVFVPV
11 simp1 GVFVPVGV
12 9 10 11 3syl FTrailsGPGV
13 3 8 12 3syl φGV
14 6 ovexi HV
15 14 a1i φHV
16 ovex 0NV
17 16 mptex x0NifxNSPx+SPx+S-NV
18 7 17 eqeltri QV
19 18 a1i φQV
20 13 15 19 3jca φGVHVQV