Metamath Proof Explorer


Theorem csbafv12g

Description: Move class substitution in and out of a function value, analogous to csbfv12 , with a direct proof proposed by Mario Carneiro, analogous to csbov123 . (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion csbafv12g AVA/xF'''B=A/xF'''A/xB

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xF'''B=A/xF'''B
2 csbeq1 y=Ay/xF=A/xF
3 csbeq1 y=Ay/xB=A/xB
4 2 3 afveq12d y=Ay/xF'''y/xB=A/xF'''A/xB
5 1 4 eqeq12d y=Ay/xF'''B=y/xF'''y/xBA/xF'''B=A/xF'''A/xB
6 vex yV
7 nfcsb1v _xy/xF
8 nfcsb1v _xy/xB
9 7 8 nfafv _xy/xF'''y/xB
10 csbeq1a x=yF=y/xF
11 csbeq1a x=yB=y/xB
12 10 11 afveq12d x=yF'''B=y/xF'''y/xB
13 6 9 12 csbief y/xF'''B=y/xF'''y/xB
14 5 13 vtoclg AVA/xF'''B=A/xF'''A/xB