Metamath Proof Explorer


Theorem nfafv

Description: Bound-variable hypothesis builder for function value, analogous to nffv . To prove a deduction version of this analogous to nffvd is not easily possible because a deduction version of nfdfat cannot be shown easily. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses nfafv.1 _ x F
nfafv.2 _ x A
Assertion nfafv _ x F ''' A

Proof

Step Hyp Ref Expression
1 nfafv.1 _ x F
2 nfafv.2 _ x A
3 dfafv2 F ''' A = if F defAt A F A V
4 1 2 nfdfat x F defAt A
5 1 2 nffv _ x F A
6 nfcv _ x V
7 4 5 6 nfif _ x if F defAt A F A V
8 3 7 nfcxfr _ x F ''' A