Metamath Proof Explorer


Theorem nfafv

Description: Bound-variable hypothesis builder for function value, analogous to nffv . To prove a deduction version of this analogous to nffvd is not easily possible because a deduction version of nfdfat cannot be shown easily. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses nfafv.1 𝑥 𝐹
nfafv.2 𝑥 𝐴
Assertion nfafv 𝑥 ( 𝐹 ''' 𝐴 )

Proof

Step Hyp Ref Expression
1 nfafv.1 𝑥 𝐹
2 nfafv.2 𝑥 𝐴
3 dfafv2 ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V )
4 1 2 nfdfat 𝑥 𝐹 defAt 𝐴
5 1 2 nffv 𝑥 ( 𝐹𝐴 )
6 nfcv 𝑥 V
7 4 5 6 nfif 𝑥 if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V )
8 3 7 nfcxfr 𝑥 ( 𝐹 ''' 𝐴 )