Metamath Proof Explorer


Theorem csbopabgALT

Description: Move substitution into a class abstraction. Version of csbopab with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007) (Proof shortened by Mario Carneiro, 17-Nov-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion csbopabgALT AVA/xyz|φ=yz|[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 csbeq1 w=Aw/xyz|φ=A/xyz|φ
2 dfsbcq2 w=Awxφ[˙A/x]˙φ
3 2 opabbidv w=Ayz|wxφ=yz|[˙A/x]˙φ
4 1 3 eqeq12d w=Aw/xyz|φ=yz|wxφA/xyz|φ=yz|[˙A/x]˙φ
5 vex wV
6 nfs1v xwxφ
7 6 nfopab _xyz|wxφ
8 sbequ12 x=wφwxφ
9 8 opabbidv x=wyz|φ=yz|wxφ
10 5 7 9 csbief w/xyz|φ=yz|wxφ
11 4 10 vtoclg AVA/xyz|φ=yz|[˙A/x]˙φ