Metamath Proof Explorer


Theorem csbopg

Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015) (Revised by Mario Carneiro, 29-Oct-2015) (Revised by ML, 25-Oct-2020)

Ref Expression
Assertion csbopg AVA/xCD=A/xCA/xD

Proof

Step Hyp Ref Expression
1 csbif A/xifCVDVCCD=if[˙A/x]˙CVDVA/xCCDA/x
2 sbcan [˙A/x]˙CVDV[˙A/x]˙CV[˙A/x]˙DV
3 sbcel1g AV[˙A/x]˙CVA/xCV
4 sbcel1g AV[˙A/x]˙DVA/xDV
5 3 4 anbi12d AV[˙A/x]˙CV[˙A/x]˙DVA/xCVA/xDV
6 2 5 bitrid AV[˙A/x]˙CVDVA/xCVA/xDV
7 csbprg AVA/xCCD=A/xCA/xCD
8 csbsng AVA/xC=A/xC
9 csbprg AVA/xCD=A/xCA/xD
10 8 9 preq12d AVA/xCA/xCD=A/xCA/xCA/xD
11 7 10 eqtrd AVA/xCCD=A/xCA/xCA/xD
12 csbconstg AVA/x=
13 6 11 12 ifbieq12d AVif[˙A/x]˙CVDVA/xCCDA/x=ifA/xCVA/xDVA/xCA/xCA/xD
14 1 13 eqtrid AVA/xifCVDVCCD=ifA/xCVA/xDVA/xCA/xCA/xD
15 dfopif CD=ifCVDVCCD
16 15 csbeq2i A/xCD=A/xifCVDVCCD
17 dfopif A/xCA/xD=ifA/xCVA/xDVA/xCA/xCA/xD
18 14 16 17 3eqtr4g AVA/xCD=A/xCA/xD