Metamath Proof Explorer


Theorem csbopg

Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015) (Revised by Mario Carneiro, 29-Oct-2015) (Revised by ML, 25-Oct-2020)

Ref Expression
Assertion csbopg A V A / x C D = A / x C A / x D

Proof

Step Hyp Ref Expression
1 csbif A / x if C V D V C C D = if [˙A / x]˙ C V D V A / x C C D A / x
2 sbcan [˙A / x]˙ C V D V [˙A / x]˙ C V [˙A / x]˙ D V
3 sbcel1g A V [˙A / x]˙ C V A / x C V
4 sbcel1g A V [˙A / x]˙ D V A / x D V
5 3 4 anbi12d A V [˙A / x]˙ C V [˙A / x]˙ D V A / x C V A / x D V
6 2 5 bitrid A V [˙A / x]˙ C V D V A / x C V A / x D V
7 csbprg A V A / x C C D = A / x C A / x C D
8 csbsng A V A / x C = A / x C
9 csbprg A V A / x C D = A / x C A / x D
10 8 9 preq12d A V A / x C A / x C D = A / x C A / x C A / x D
11 7 10 eqtrd A V A / x C C D = A / x C A / x C A / x D
12 csbconstg A V A / x =
13 6 11 12 ifbieq12d A V if [˙A / x]˙ C V D V A / x C C D A / x = if A / x C V A / x D V A / x C A / x C A / x D
14 1 13 eqtrid A V A / x if C V D V C C D = if A / x C V A / x D V A / x C A / x C A / x D
15 dfopif C D = if C V D V C C D
16 15 csbeq2i A / x C D = A / x if C V D V C C D
17 dfopif A / x C A / x D = if A / x C V A / x D V A / x C A / x C A / x D
18 14 16 17 3eqtr4g A V A / x C D = A / x C A / x D