Metamath Proof Explorer


Theorem csslss

Description: A closed subspace of a pre-Hilbert space is a linear subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses csslss.c C=ClSubSpW
csslss.l L=LSubSpW
Assertion csslss WPreHilSCSL

Proof

Step Hyp Ref Expression
1 csslss.c C=ClSubSpW
2 csslss.l L=LSubSpW
3 eqid ocvW=ocvW
4 3 1 cssi SCS=ocvWocvWS
5 4 adantl WPreHilSCS=ocvWocvWS
6 eqid BaseW=BaseW
7 6 3 ocvss ocvWSBaseW
8 7 a1i SCocvWSBaseW
9 6 3 2 ocvlss WPreHilocvWSBaseWocvWocvWSL
10 8 9 sylan2 WPreHilSCocvWocvWSL
11 5 10 eqeltrd WPreHilSCSL