Metamath Proof Explorer


Theorem cusgrexg

Description: For each set there is a set of edges so that the set together with these edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 5-Nov-2020)

Ref Expression
Assertion cusgrexg VWeVeComplUSGraph

Proof

Step Hyp Ref Expression
1 fveqeq2 y=xy=2x=2
2 1 cbvrabv y𝒫V|y=2=x𝒫V|x=2
3 2 cusgrexilem1 VWIy𝒫V|y=2V
4 2 cusgrexi VWVIy𝒫V|y=2ComplUSGraph
5 opeq2 e=Iy𝒫V|y=2Ve=VIy𝒫V|y=2
6 5 eleq1d e=Iy𝒫V|y=2VeComplUSGraphVIy𝒫V|y=2ComplUSGraph
7 3 4 6 spcedv VWeVeComplUSGraph