Metamath Proof Explorer


Theorem cuspusp

Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Assertion cuspusp WCUnifSpWUnifSp

Proof

Step Hyp Ref Expression
1 iscusp WCUnifSpWUnifSpcFilBaseWcCauFilUUnifStWTopOpenWfLimc
2 1 simplbi WCUnifSpWUnifSp