Metamath Proof Explorer


Theorem cvlexch4N

Description: An atomic covering lattice has the exchange property. Part of Definition 7.8 of MaedaMaeda p. 32. (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvlexch3.b B=BaseK
cvlexch3.l ˙=K
cvlexch3.j ˙=joinK
cvlexch3.m ˙=meetK
cvlexch3.z 0˙=0.K
cvlexch3.a A=AtomsK
Assertion cvlexch4N KCvLatPAQAXBP˙X=0˙P˙X˙QX˙P=X˙Q

Proof

Step Hyp Ref Expression
1 cvlexch3.b B=BaseK
2 cvlexch3.l ˙=K
3 cvlexch3.j ˙=joinK
4 cvlexch3.m ˙=meetK
5 cvlexch3.z 0˙=0.K
6 cvlexch3.a A=AtomsK
7 cvlatl KCvLatKAtLat
8 7 adantr KCvLatPAQAXBKAtLat
9 simpr1 KCvLatPAQAXBPA
10 simpr3 KCvLatPAQAXBXB
11 1 2 4 5 6 atnle KAtLatPAXB¬P˙XP˙X=0˙
12 8 9 10 11 syl3anc KCvLatPAQAXB¬P˙XP˙X=0˙
13 1 2 3 6 cvlexchb1 KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q
14 13 3expia KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q
15 12 14 sylbird KCvLatPAQAXBP˙X=0˙P˙X˙QX˙P=X˙Q
16 15 3impia KCvLatPAQAXBP˙X=0˙P˙X˙QX˙P=X˙Q