Metamath Proof Explorer


Theorem cvmlift2lem8

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses cvmlift2.b B = C
cvmlift2.f φ F C CovMap J
cvmlift2.g φ G II × t II Cn J
cvmlift2.p φ P B
cvmlift2.i φ F P = 0 G 0
cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
Assertion cvmlift2lem8 φ X 0 1 X K 0 = H X

Proof

Step Hyp Ref Expression
1 cvmlift2.b B = C
2 cvmlift2.f φ F C CovMap J
3 cvmlift2.g φ G II × t II Cn J
4 cvmlift2.p φ P B
5 cvmlift2.i φ F P = 0 G 0
6 cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
7 cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
8 simpr φ X 0 1 X 0 1
9 0elunit 0 0 1
10 1 2 3 4 5 6 7 cvmlift2lem4 X 0 1 0 0 1 X K 0 = ι f II Cn C | F f = z 0 1 X G z f 0 = H X 0
11 8 9 10 sylancl φ X 0 1 X K 0 = ι f II Cn C | F f = z 0 1 X G z f 0 = H X 0
12 eqid ι f II Cn C | F f = z 0 1 X G z f 0 = H X = ι f II Cn C | F f = z 0 1 X G z f 0 = H X
13 1 2 3 4 5 6 12 cvmlift2lem3 φ X 0 1 ι f II Cn C | F f = z 0 1 X G z f 0 = H X II Cn C F ι f II Cn C | F f = z 0 1 X G z f 0 = H X = z 0 1 X G z ι f II Cn C | F f = z 0 1 X G z f 0 = H X 0 = H X
14 13 simp3d φ X 0 1 ι f II Cn C | F f = z 0 1 X G z f 0 = H X 0 = H X
15 11 14 eqtrd φ X 0 1 X K 0 = H X