Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Covering maps
cvmlift2lem8
Next ⟩
cvmlift2lem9
Metamath Proof Explorer
Ascii
Unicode
Theorem
cvmlift2lem8
Description:
Lemma for
cvmlift2
.
(Contributed by
Mario Carneiro
, 9-Mar-2015)
Ref
Expression
Hypotheses
cvmlift2.b
⊢
B
=
⋃
C
cvmlift2.f
⊢
φ
→
F
∈
C
CovMap
J
cvmlift2.g
⊢
φ
→
G
∈
II
×
t
II
Cn
J
cvmlift2.p
⊢
φ
→
P
∈
B
cvmlift2.i
⊢
φ
→
F
⁡
P
=
0
G
0
cvmlift2.h
⊢
H
=
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
z
G
0
∧
f
⁡
0
=
P
cvmlift2.k
⊢
K
=
x
∈
0
1
,
y
∈
0
1
⟼
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
x
G
z
∧
f
⁡
0
=
H
⁡
x
⁡
y
Assertion
cvmlift2lem8
⊢
φ
∧
X
∈
0
1
→
X
K
0
=
H
⁡
X
Proof
Step
Hyp
Ref
Expression
1
cvmlift2.b
⊢
B
=
⋃
C
2
cvmlift2.f
⊢
φ
→
F
∈
C
CovMap
J
3
cvmlift2.g
⊢
φ
→
G
∈
II
×
t
II
Cn
J
4
cvmlift2.p
⊢
φ
→
P
∈
B
5
cvmlift2.i
⊢
φ
→
F
⁡
P
=
0
G
0
6
cvmlift2.h
⊢
H
=
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
z
G
0
∧
f
⁡
0
=
P
7
cvmlift2.k
⊢
K
=
x
∈
0
1
,
y
∈
0
1
⟼
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
x
G
z
∧
f
⁡
0
=
H
⁡
x
⁡
y
8
simpr
⊢
φ
∧
X
∈
0
1
→
X
∈
0
1
9
0elunit
⊢
0
∈
0
1
10
1
2
3
4
5
6
7
cvmlift2lem4
⊢
X
∈
0
1
∧
0
∈
0
1
→
X
K
0
=
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
⁡
0
11
8
9
10
sylancl
⊢
φ
∧
X
∈
0
1
→
X
K
0
=
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
⁡
0
12
eqid
⊢
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
=
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
13
1
2
3
4
5
6
12
cvmlift2lem3
⊢
φ
∧
X
∈
0
1
→
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
∈
II
Cn
C
∧
F
∘
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
=
z
∈
0
1
⟼
X
G
z
∧
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
⁡
0
=
H
⁡
X
14
13
simp3d
⊢
φ
∧
X
∈
0
1
→
ι
f
∈
II
Cn
C
|
F
∘
f
=
z
∈
0
1
⟼
X
G
z
∧
f
⁡
0
=
H
⁡
X
⁡
0
=
H
⁡
X
15
11
14
eqtrd
⊢
φ
∧
X
∈
0
1
→
X
K
0
=
H
⁡
X