Metamath Proof Explorer
Description: Ordering property for complex exponentiation. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recxpcld.1 |
|
|
|
recxpcld.2 |
|
|
|
recxpcld.3 |
|
|
|
cxple2ad.4 |
|
|
|
cxple2ad.5 |
|
|
|
cxple2ad.6 |
|
|
Assertion |
cxple2ad |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recxpcld.1 |
|
| 2 |
|
recxpcld.2 |
|
| 3 |
|
recxpcld.3 |
|
| 4 |
|
cxple2ad.4 |
|
| 5 |
|
cxple2ad.5 |
|
| 6 |
|
cxple2ad.6 |
|
| 7 |
|
cxple2a |
|
| 8 |
1 3 4 2 5 6 7
|
syl321anc |
|