Metamath Proof Explorer


Theorem cxpne0

Description: Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpne0 AA0BAB0

Proof

Step Hyp Ref Expression
1 cxpef AA0BAB=eBlogA
2 id BB
3 logcl AA0logA
4 mulcl BlogABlogA
5 2 3 4 syl2anr AA0BBlogA
6 5 3impa AA0BBlogA
7 efne0 BlogAeBlogA0
8 6 7 syl AA0BeBlogA0
9 1 8 eqnetrd AA0BAB0