Metamath Proof Explorer


Theorem cxpeq0

Description: Complex exponentiation is zero iff the base is zero and the exponent is nonzero. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion cxpeq0 ABAB=0A=0B0

Proof

Step Hyp Ref Expression
1 cxpne0 AA0BAB0
2 1 3com23 ABA0AB0
3 2 3expia ABA0AB0
4 3 necon4d ABAB=0A=0
5 ax-1ne0 10
6 cxp0 AA0=1
7 6 neeq1d AA0010
8 5 7 mpbiri AA00
9 8 adantr ABA00
10 oveq2 B=0AB=A0
11 10 neeq1d B=0AB0A00
12 9 11 syl5ibrcom ABB=0AB0
13 12 necon2d ABAB=0B0
14 4 13 jcad ABAB=0A=0B0
15 0cxp BB00B=0
16 oveq1 A=0AB=0B
17 16 eqeq1d A=0AB=00B=0
18 15 17 syl5ibrcom BB0A=0AB=0
19 18 expimpd BB0A=0AB=0
20 19 ancomsd BA=0B0AB=0
21 20 adantl ABA=0B0AB=0
22 14 21 impbid ABAB=0A=0B0