Metamath Proof Explorer


Theorem cxpp1

Description: Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpp1 AA0BAB+1=ABA

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 cxpadd AA0B1AB+1=ABA1
3 1 2 mp3an3 AA0BAB+1=ABA1
4 3 3impa AA0BAB+1=ABA1
5 cxp1 AA1=A
6 5 3ad2ant1 AA0BA1=A
7 6 oveq2d AA0BABA1=ABA
8 4 7 eqtrd AA0BAB+1=ABA