Metamath Proof Explorer


Theorem cycsubgss

Description: The cyclic subgroup generated by an element A is a subset of any subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cycsubg.x X=BaseG
cycsubg.t ·˙=G
cycsubg.f F=xx·˙A
Assertion cycsubgss SSubGrpGASranFS

Proof

Step Hyp Ref Expression
1 cycsubg.x X=BaseG
2 cycsubg.t ·˙=G
3 cycsubg.f F=xx·˙A
4 2 subgmulgcl SSubGrpGxASx·˙AS
5 4 3expa SSubGrpGxASx·˙AS
6 5 an32s SSubGrpGASxx·˙AS
7 6 3 fmptd SSubGrpGASF:S
8 7 frnd SSubGrpGASranFS