Metamath Proof Explorer


Theorem cyggex

Description: The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cygctb.1 B=BaseG
cyggex.o E=gExG
Assertion cyggex GCycGrpBFinE=B

Proof

Step Hyp Ref Expression
1 cygctb.1 B=BaseG
2 cyggex.o E=gExG
3 1 2 cyggex2 GCycGrpE=ifBFinB0
4 iftrue BFinifBFinB0=B
5 3 4 sylan9eq GCycGrpBFinE=B