| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 |  | 
						
							| 2 |  | cyggex.o |  | 
						
							| 3 | 1 2 | cyggex |  | 
						
							| 4 | 3 | expcom |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | simpll |  | 
						
							| 7 |  | ablgrp |  | 
						
							| 8 | 7 | ad2antrr |  | 
						
							| 9 |  | simplr |  | 
						
							| 10 | 1 2 | gexcl2 |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 2 12 | gexex |  | 
						
							| 14 | 6 11 13 | syl2anc |  | 
						
							| 15 |  | simplr |  | 
						
							| 16 | 15 | eqeq2d |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 1 17 18 12 | cyggenod |  | 
						
							| 20 | 8 9 19 | syl2anc |  | 
						
							| 21 |  | ne0i |  | 
						
							| 22 | 1 17 18 | iscyg2 |  | 
						
							| 23 | 22 | baib |  | 
						
							| 24 | 8 23 | syl |  | 
						
							| 25 | 21 24 | imbitrrid |  | 
						
							| 26 | 20 25 | sylbird |  | 
						
							| 27 | 26 | expdimp |  | 
						
							| 28 | 16 27 | sylbid |  | 
						
							| 29 | 28 | rexlimdva |  | 
						
							| 30 | 14 29 | mpd |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 | 5 31 | impbid |  |