| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|
| 2 |
|
dalawlem.j |
|
| 3 |
|
dalawlem.m |
|
| 4 |
|
dalawlem.a |
|
| 5 |
|
dalawlem.o |
|
| 6 |
|
simp11 |
|
| 7 |
6
|
hllatd |
|
| 8 |
|
simp121 |
|
| 9 |
|
simp131 |
|
| 10 |
|
eqid |
|
| 11 |
10 2 4
|
hlatjcl |
|
| 12 |
6 8 9 11
|
syl3anc |
|
| 13 |
|
simp122 |
|
| 14 |
|
simp132 |
|
| 15 |
10 2 4
|
hlatjcl |
|
| 16 |
6 13 14 15
|
syl3anc |
|
| 17 |
10 3
|
latmcl |
|
| 18 |
7 12 16 17
|
syl3anc |
|
| 19 |
6 18
|
jca |
|
| 20 |
|
simp12 |
|
| 21 |
|
simp13 |
|
| 22 |
|
simp2l |
|
| 23 |
|
simp2r |
|
| 24 |
|
simp31 |
|
| 25 |
|
simp32 |
|
| 26 |
10 1 3
|
latmle1 |
|
| 27 |
7 12 16 26
|
syl3anc |
|
| 28 |
10 1 3
|
latmle2 |
|
| 29 |
7 12 16 28
|
syl3anc |
|
| 30 |
|
simp33 |
|
| 31 |
27 29 30
|
3jca |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
10 1 2 4 3 5 32 33 34
|
dath2 |
|
| 36 |
19 20 21 22 23 24 25 31 35
|
syl323anc |
|