Description: Lemma for dalem14 . (Contributed by NM, 21-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
dalem13.o | |
||
dalem13.y | |
||
dalem13.z | |
||
dalem13.w | |
||
Assertion | dalem13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | dalem13.o | |
|
6 | dalem13.y | |
|
7 | dalem13.z | |
|
8 | dalem13.w | |
|
9 | 1 | dalemkehl | |
10 | 9 | adantr | |
11 | 1 | dalemyeo | |
12 | 11 | adantr | |
13 | 1 | dalemzeo | |
14 | 13 | adantr | |
15 | eqid | |
|
16 | 1 2 3 4 5 15 6 7 8 | dalem9 | |
17 | 1 | dalemkelat | |
18 | 1 5 | dalemyeb | |
19 | 1 4 | dalemceb | |
20 | eqid | |
|
21 | 20 2 3 | latlej1 | |
22 | 17 18 19 21 | syl3anc | |
23 | 22 8 | breqtrrdi | |
24 | 23 | adantr | |
25 | 1 2 3 4 5 6 7 8 | dalem8 | |
26 | 25 | adantr | |
27 | simpr | |
|
28 | 2 3 5 15 | 2lplnj | |
29 | 10 12 14 16 24 26 27 28 | syl133anc | |