Metamath Proof Explorer


Theorem dalem13

Description: Lemma for dalem14 . (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem13.o O=LPlanesK
dalem13.y Y=P˙Q˙R
dalem13.z Z=S˙T˙U
dalem13.w W=Y˙C
Assertion dalem13 φYZY˙Z=W

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem13.o O=LPlanesK
6 dalem13.y Y=P˙Q˙R
7 dalem13.z Z=S˙T˙U
8 dalem13.w W=Y˙C
9 1 dalemkehl φKHL
10 9 adantr φYZKHL
11 1 dalemyeo φYO
12 11 adantr φYZYO
13 1 dalemzeo φZO
14 13 adantr φYZZO
15 eqid LVolsK=LVolsK
16 1 2 3 4 5 15 6 7 8 dalem9 φYZWLVolsK
17 1 dalemkelat φKLat
18 1 5 dalemyeb φYBaseK
19 1 4 dalemceb φCBaseK
20 eqid BaseK=BaseK
21 20 2 3 latlej1 KLatYBaseKCBaseKY˙Y˙C
22 17 18 19 21 syl3anc φY˙Y˙C
23 22 8 breqtrrdi φY˙W
24 23 adantr φYZY˙W
25 1 2 3 4 5 6 7 8 dalem8 φZ˙W
26 25 adantr φYZZ˙W
27 simpr φYZYZ
28 2 3 5 15 2lplnj KHLYOZOWLVolsKY˙WZ˙WYZY˙Z=W
29 10 12 14 16 24 26 27 28 syl133anc φYZY˙Z=W