Metamath Proof Explorer


Theorem deg1propd

Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1propd.b1 φB=BaseR
deg1propd.b2 φB=BaseS
deg1propd.p φxByBx+Ry=x+Sy
Assertion deg1propd φdeg1R=deg1S

Proof

Step Hyp Ref Expression
1 deg1propd.b1 φB=BaseR
2 deg1propd.b2 φB=BaseS
3 deg1propd.p φxByBx+Ry=x+Sy
4 1 2 3 mdegpropd φ1𝑜mDegR=1𝑜mDegS
5 eqid deg1R=deg1R
6 5 deg1fval deg1R=1𝑜mDegR
7 eqid deg1S=deg1S
8 7 deg1fval deg1S=1𝑜mDegS
9 4 6 8 3eqtr4g φdeg1R=deg1S