Metamath Proof Explorer


Theorem deg1z

Description: Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1z.d D=deg1R
deg1z.p P=Poly1R
deg1z.z 0˙=0P
Assertion deg1z RRingD0˙=−∞

Proof

Step Hyp Ref Expression
1 deg1z.d D=deg1R
2 deg1z.p P=Poly1R
3 deg1z.z 0˙=0P
4 1on 1𝑜On
5 1 deg1fval D=1𝑜mDegR
6 eqid 1𝑜mPolyR=1𝑜mPolyR
7 6 2 3 ply1mpl0 0˙=01𝑜mPolyR
8 5 6 7 mdeg0 1𝑜OnRRingD0˙=−∞
9 4 8 mpan RRingD0˙=−∞