Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdeg0.d | |
|
mdeg0.p | |
||
mdeg0.z | |
||
Assertion | mdeg0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdeg0.d | |
|
2 | mdeg0.p | |
|
3 | mdeg0.z | |
|
4 | ringgrp | |
|
5 | 2 | mplgrp | |
6 | 4 5 | sylan2 | |
7 | eqid | |
|
8 | 7 3 | grpidcl | |
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 2 7 9 10 11 | mdegval | |
13 | 6 8 12 | 3syl | |
14 | simpl | |
|
15 | 4 | adantl | |
16 | 2 10 9 3 14 15 | mpl0 | |
17 | fvex | |
|
18 | fnconstg | |
|
19 | 17 18 | mp1i | |
20 | 16 | fneq1d | |
21 | 19 20 | mpbird | |
22 | ovex | |
|
23 | 22 | rabex | |
24 | 23 | a1i | |
25 | 17 | a1i | |
26 | fnsuppeq0 | |
|
27 | 21 24 25 26 | syl3anc | |
28 | 16 27 | mpbird | |
29 | 28 | imaeq2d | |
30 | ima0 | |
|
31 | 29 30 | eqtrdi | |
32 | 31 | supeq1d | |
33 | xrsup0 | |
|
34 | 32 33 | eqtrdi | |
35 | 13 34 | eqtrd | |