Metamath Proof Explorer


Theorem mdeg0

Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdeg0.d D=ImDegR
mdeg0.p P=ImPolyR
mdeg0.z 0˙=0P
Assertion mdeg0 IVRRingD0˙=−∞

Proof

Step Hyp Ref Expression
1 mdeg0.d D=ImDegR
2 mdeg0.p P=ImPolyR
3 mdeg0.z 0˙=0P
4 ringgrp RRingRGrp
5 2 mplgrp IVRGrpPGrp
6 4 5 sylan2 IVRRingPGrp
7 eqid BaseP=BaseP
8 7 3 grpidcl PGrp0˙BaseP
9 eqid 0R=0R
10 eqid x0I|x-1Fin=x0I|x-1Fin
11 eqid yx0I|x-1Finfldy=yx0I|x-1Finfldy
12 1 2 7 9 10 11 mdegval 0˙BasePD0˙=supyx0I|x-1Finfldy0˙supp0R*<
13 6 8 12 3syl IVRRingD0˙=supyx0I|x-1Finfldy0˙supp0R*<
14 simpl IVRRingIV
15 4 adantl IVRRingRGrp
16 2 10 9 3 14 15 mpl0 IVRRing0˙=x0I|x-1Fin×0R
17 fvex 0RV
18 fnconstg 0RVx0I|x-1Fin×0RFnx0I|x-1Fin
19 17 18 mp1i IVRRingx0I|x-1Fin×0RFnx0I|x-1Fin
20 16 fneq1d IVRRing0˙Fnx0I|x-1Finx0I|x-1Fin×0RFnx0I|x-1Fin
21 19 20 mpbird IVRRing0˙Fnx0I|x-1Fin
22 ovex 0IV
23 22 rabex x0I|x-1FinV
24 23 a1i IVRRingx0I|x-1FinV
25 17 a1i IVRRing0RV
26 fnsuppeq0 0˙Fnx0I|x-1Finx0I|x-1FinV0RV0˙supp0R=0˙=x0I|x-1Fin×0R
27 21 24 25 26 syl3anc IVRRing0˙supp0R=0˙=x0I|x-1Fin×0R
28 16 27 mpbird IVRRing0˙supp0R=
29 28 imaeq2d IVRRingyx0I|x-1Finfldy0˙supp0R=yx0I|x-1Finfldy
30 ima0 yx0I|x-1Finfldy=
31 29 30 eqtrdi IVRRingyx0I|x-1Finfldy0˙supp0R=
32 31 supeq1d IVRRingsupyx0I|x-1Finfldy0˙supp0R*<=sup*<
33 xrsup0 sup*<=−∞
34 32 33 eqtrdi IVRRingsupyx0I|x-1Finfldy0˙supp0R*<=−∞
35 13 34 eqtrd IVRRingD0˙=−∞