Metamath Proof Explorer


Definition df-dip

Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of ReedSimon p. 63 and Theorem 6.44 of Ponnusamy p. 361. Vector addition is ( 1stw ) , the scalar product is ( 2ndw ) , and the norm is n . (Contributed by NM, 10-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-dip 𝑖OLD=uNrmCVecxBaseSetu,yBaseSetuk=14iknormCVux+vuik𝑠OLDuy24

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdip class𝑖OLD
1 vu setvaru
2 cnv classNrmCVec
3 vx setvarx
4 cba classBaseSet
5 1 cv setvaru
6 5 4 cfv classBaseSetu
7 vy setvary
8 vk setvark
9 c1 class1
10 cfz class
11 c4 class4
12 9 11 10 co class14
13 ci classi
14 cexp class^
15 8 cv setvark
16 13 15 14 co classik
17 cmul class×
18 cnmcv classnormCV
19 5 18 cfv classnormCVu
20 3 cv setvarx
21 cpv class+v
22 5 21 cfv class+vu
23 cns class𝑠OLD
24 5 23 cfv class𝑠OLDu
25 7 cv setvary
26 16 25 24 co classik𝑠OLDuy
27 20 26 22 co classx+vuik𝑠OLDuy
28 27 19 cfv classnormCVux+vuik𝑠OLDuy
29 c2 class2
30 28 29 14 co classnormCVux+vuik𝑠OLDuy2
31 16 30 17 co classiknormCVux+vuik𝑠OLDuy2
32 12 31 8 csu classk=14iknormCVux+vuik𝑠OLDuy2
33 cdiv class÷
34 32 11 33 co classk=14iknormCVux+vuik𝑠OLDuy24
35 3 7 6 6 34 cmpo classxBaseSetu,yBaseSetuk=14iknormCVux+vuik𝑠OLDuy24
36 1 2 35 cmpt classuNrmCVecxBaseSetu,yBaseSetuk=14iknormCVux+vuik𝑠OLDuy24
37 0 36 wceq wff𝑖OLD=uNrmCVecxBaseSetu,yBaseSetuk=14iknormCVux+vuik𝑠OLDuy24