Metamath Proof Explorer


Theorem dipfval

Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X = BaseSet U
dipfval.2 G = + v U
dipfval.4 S = 𝑠OLD U
dipfval.6 N = norm CV U
dipfval.7 P = 𝑖OLD U
Assertion dipfval U NrmCVec P = x X , y X k = 1 4 i k N x G i k S y 2 4

Proof

Step Hyp Ref Expression
1 dipfval.1 X = BaseSet U
2 dipfval.2 G = + v U
3 dipfval.4 S = 𝑠OLD U
4 dipfval.6 N = norm CV U
5 dipfval.7 P = 𝑖OLD U
6 fveq2 u = U BaseSet u = BaseSet U
7 6 1 eqtr4di u = U BaseSet u = X
8 fveq2 u = U norm CV u = norm CV U
9 8 4 eqtr4di u = U norm CV u = N
10 fveq2 u = U + v u = + v U
11 10 2 eqtr4di u = U + v u = G
12 eqidd u = U x = x
13 fveq2 u = U 𝑠OLD u = 𝑠OLD U
14 13 3 eqtr4di u = U 𝑠OLD u = S
15 14 oveqd u = U i k 𝑠OLD u y = i k S y
16 11 12 15 oveq123d u = U x + v u i k 𝑠OLD u y = x G i k S y
17 9 16 fveq12d u = U norm CV u x + v u i k 𝑠OLD u y = N x G i k S y
18 17 oveq1d u = U norm CV u x + v u i k 𝑠OLD u y 2 = N x G i k S y 2
19 18 oveq2d u = U i k norm CV u x + v u i k 𝑠OLD u y 2 = i k N x G i k S y 2
20 19 sumeq2sdv u = U k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 = k = 1 4 i k N x G i k S y 2
21 20 oveq1d u = U k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4 = k = 1 4 i k N x G i k S y 2 4
22 7 7 21 mpoeq123dv u = U x BaseSet u , y BaseSet u k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4 = x X , y X k = 1 4 i k N x G i k S y 2 4
23 df-dip 𝑖OLD = u NrmCVec x BaseSet u , y BaseSet u k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4
24 1 fvexi X V
25 24 24 mpoex x X , y X k = 1 4 i k N x G i k S y 2 4 V
26 22 23 25 fvmpt U NrmCVec 𝑖OLD U = x X , y X k = 1 4 i k N x G i k S y 2 4
27 5 26 eqtrid U NrmCVec P = x X , y X k = 1 4 i k N x G i k S y 2 4