Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dipfval.1 | |
|
dipfval.2 | |
||
dipfval.4 | |
||
dipfval.6 | |
||
dipfval.7 | |
||
Assertion | dipfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.1 | |
|
2 | dipfval.2 | |
|
3 | dipfval.4 | |
|
4 | dipfval.6 | |
|
5 | dipfval.7 | |
|
6 | fveq2 | |
|
7 | 6 1 | eqtr4di | |
8 | fveq2 | |
|
9 | 8 4 | eqtr4di | |
10 | fveq2 | |
|
11 | 10 2 | eqtr4di | |
12 | eqidd | |
|
13 | fveq2 | |
|
14 | 13 3 | eqtr4di | |
15 | 14 | oveqd | |
16 | 11 12 15 | oveq123d | |
17 | 9 16 | fveq12d | |
18 | 17 | oveq1d | |
19 | 18 | oveq2d | |
20 | 19 | sumeq2sdv | |
21 | 20 | oveq1d | |
22 | 7 7 21 | mpoeq123dv | |
23 | df-dip | |
|
24 | 1 | fvexi | |
25 | 24 24 | mpoex | |
26 | 22 23 25 | fvmpt | |
27 | 5 26 | eqtrid | |