Metamath Proof Explorer


Theorem dipfval

Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X=BaseSetU
dipfval.2 G=+vU
dipfval.4 S=𝑠OLDU
dipfval.6 N=normCVU
dipfval.7 P=𝑖OLDU
Assertion dipfval UNrmCVecP=xX,yXk=14ikNxGikSy24

Proof

Step Hyp Ref Expression
1 dipfval.1 X=BaseSetU
2 dipfval.2 G=+vU
3 dipfval.4 S=𝑠OLDU
4 dipfval.6 N=normCVU
5 dipfval.7 P=𝑖OLDU
6 fveq2 u=UBaseSetu=BaseSetU
7 6 1 eqtr4di u=UBaseSetu=X
8 fveq2 u=UnormCVu=normCVU
9 8 4 eqtr4di u=UnormCVu=N
10 fveq2 u=U+vu=+vU
11 10 2 eqtr4di u=U+vu=G
12 eqidd u=Ux=x
13 fveq2 u=U𝑠OLDu=𝑠OLDU
14 13 3 eqtr4di u=U𝑠OLDu=S
15 14 oveqd u=Uik𝑠OLDuy=ikSy
16 11 12 15 oveq123d u=Ux+vuik𝑠OLDuy=xGikSy
17 9 16 fveq12d u=UnormCVux+vuik𝑠OLDuy=NxGikSy
18 17 oveq1d u=UnormCVux+vuik𝑠OLDuy2=NxGikSy2
19 18 oveq2d u=UiknormCVux+vuik𝑠OLDuy2=ikNxGikSy2
20 19 sumeq2sdv u=Uk=14iknormCVux+vuik𝑠OLDuy2=k=14ikNxGikSy2
21 20 oveq1d u=Uk=14iknormCVux+vuik𝑠OLDuy24=k=14ikNxGikSy24
22 7 7 21 mpoeq123dv u=UxBaseSetu,yBaseSetuk=14iknormCVux+vuik𝑠OLDuy24=xX,yXk=14ikNxGikSy24
23 df-dip 𝑖OLD=uNrmCVecxBaseSetu,yBaseSetuk=14iknormCVux+vuik𝑠OLDuy24
24 1 fvexi XV
25 24 24 mpoex xX,yXk=14ikNxGikSy24V
26 22 23 25 fvmpt UNrmCVec𝑖OLDU=xX,yXk=14ikNxGikSy24
27 5 26 eqtrid UNrmCVecP=xX,yXk=14ikNxGikSy24