Metamath Proof Explorer


Definition df-fdiv

Description: Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion df-fdiv /f = fV,gVf÷fgsupp0g

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfdiv class/f
1 vf setvarf
2 cvv classV
3 vg setvarg
4 1 cv setvarf
5 cdiv class÷
6 5 cof classf÷
7 3 cv setvarg
8 4 7 6 co classf÷fg
9 csupp classsupp
10 cc0 class0
11 7 10 9 co classsupp0g
12 8 11 cres classf÷fgsupp0g
13 1 3 2 2 12 cmpo classfV,gVf÷fgsupp0g
14 0 13 wceq wff/f = fV,gVf÷fgsupp0g