Metamath Proof Explorer


Definition df-mdl

Description: Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mdl mMdl=tmFS|[˙mUVt/u]˙[˙mExt/x]˙[˙mVLt/v]˙[˙mEvalt/n]˙[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdl classmMdl
1 vt setvart
2 cmfs classmFS
3 cmuv classmUV
4 1 cv setvart
5 4 3 cfv classmUVt
6 vu setvaru
7 cmex classmEx
8 4 7 cfv classmExt
9 vx setvarx
10 cmvl classmVL
11 4 10 cfv classmVLt
12 vv setvarv
13 cmevl classmEval
14 4 13 cfv classmEvalt
15 vn setvarn
16 cmfsh classmFresh
17 4 16 cfv classmFresht
18 vf setvarf
19 6 cv setvaru
20 cmtc classmTC
21 4 20 cfv classmTCt
22 cvv classV
23 21 22 cxp classmTCt×V
24 19 23 wss wffumTCt×V
25 18 cv setvarf
26 cmfr classmFRel
27 4 26 cfv classmFRelt
28 25 27 wcel wfffmFRelt
29 15 cv setvarn
30 cpm class𝑝𝑚
31 12 cv setvarv
32 31 8 cxp classv×mExt
33 19 32 30 co classu𝑝𝑚v×mExt
34 29 33 wcel wffnu𝑝𝑚v×mExt
35 24 28 34 w3a wffumTCt×VfmFReltnu𝑝𝑚v×mExt
36 vm setvarm
37 ve setvare
38 9 cv setvarx
39 36 cv setvarm
40 37 cv setvare
41 39 40 cop classme
42 41 csn classme
43 29 42 cima classnme
44 c1st class1st
45 40 44 cfv class1ste
46 45 csn class1ste
47 19 46 cima classu1ste
48 43 47 wss wffnmeu1ste
49 48 37 38 wral wffexnmeu1ste
50 vy setvary
51 cmvar classmVR
52 4 51 cfv classmVRt
53 cmvh classmVH
54 4 53 cfv classmVHt
55 50 cv setvary
56 55 54 cfv classmVHty
57 39 56 cop classmmVHty
58 55 39 cfv classmy
59 57 58 29 wbr wffmmVHtynmy
60 59 50 52 wral wffymVRtmmVHtynmy
61 vd setvard
62 vh setvarh
63 va setvara
64 61 cv setvard
65 62 cv setvarh
66 63 cv setvara
67 64 65 66 cotp classdha
68 cmax classmAx
69 4 68 cfv classmAxt
70 67 69 wcel wffdhamAxt
71 vz setvarz
72 71 cv setvarz
73 55 72 64 wbr wffydz
74 72 39 cfv classmz
75 58 74 25 wbr wffmyfmz
76 73 75 wi wffydzmyfmz
77 76 71 wal wffzydzmyfmz
78 77 50 wal wffyzydzmyfmz
79 29 cdm classdomn
80 39 csn classm
81 79 80 cima classdomnm
82 65 81 wss wffhdomnm
83 78 82 wa wffyzydzmyfmzhdomnm
84 39 66 79 wbr wffmdomna
85 83 84 wi wffyzydzmyfmzhdomnmmdomna
86 70 85 wi wffdhamAxtyzydzmyfmzhdomnmmdomna
87 86 63 wal wffadhamAxtyzydzmyfmzhdomnmmdomna
88 87 62 wal wffhadhamAxtyzydzmyfmzhdomnmmdomna
89 88 61 wal wffdhadhamAxtyzydzmyfmzhdomnmmdomna
90 49 60 89 w3a wffexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomna
91 vs setvars
92 cmsub classmSubst
93 4 92 cfv classmSubstt
94 93 crn classranmSubstt
95 91 cv setvars
96 95 39 cop classsm
97 cmvsb classmVSubst
98 4 97 cfv classmVSubstt
99 96 55 98 wbr wffsmmVSubstty
100 40 95 cfv classse
101 39 100 cop classmse
102 101 csn classmse
103 29 102 cima classnmse
104 55 40 cop classye
105 104 csn classye
106 29 105 cima classnye
107 103 106 wceq wffnmse=nye
108 99 107 wi wffsmmVSubsttynmse=nye
109 108 50 wal wffysmmVSubsttynmse=nye
110 109 37 8 wral wffemExtysmmVSubsttynmse=nye
111 110 91 94 wral wffsranmSubsttemExtysmmVSubsttynmse=nye
112 vp setvarp
113 cmvrs classmVars
114 4 113 cfv classmVarst
115 40 114 cfv classmVarste
116 39 115 cres classmmVarste
117 112 cv setvarp
118 117 115 cres classpmVarste
119 116 118 wceq wffmmVarste=pmVarste
120 117 40 cop classpe
121 120 csn classpe
122 29 121 cima classnpe
123 43 122 wceq wffnme=npe
124 119 123 wi wffmmVarste=pmVarstenme=npe
125 124 37 38 wral wffexmmVarste=pmVarstenme=npe
126 125 112 31 wral wffpvexmmVarste=pmVarstenme=npe
127 39 115 cima classmmVarste
128 55 csn classy
129 25 128 cima classfy
130 127 129 wss wffmmVarstefy
131 43 129 wss wffnmefy
132 130 131 wi wffmmVarstefynmefy
133 132 37 38 wral wffexmmVarstefynmefy
134 133 50 19 wral wffyuexmmVarstefynmefy
135 111 126 134 w3a wffsranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
136 90 135 wa wffexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
137 136 36 31 wral wffmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
138 35 137 wa wffumTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
139 138 18 17 wsbc wff[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
140 139 15 14 wsbc wff[˙mEvalt/n]˙[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
141 140 12 11 wsbc wff[˙mVLt/v]˙[˙mEvalt/n]˙[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
142 141 9 8 wsbc wff[˙mExt/x]˙[˙mVLt/v]˙[˙mEvalt/n]˙[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
143 142 6 5 wsbc wff[˙mUVt/u]˙[˙mExt/x]˙[˙mVLt/v]˙[˙mEvalt/n]˙[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
144 143 1 2 crab classtmFS|[˙mUVt/u]˙[˙mExt/x]˙[˙mVLt/v]˙[˙mEvalt/n]˙[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy
145 0 144 wceq wffmMdl=tmFS|[˙mUVt/u]˙[˙mExt/x]˙[˙mVLt/v]˙[˙mEvalt/n]˙[˙mFresht/f]˙umTCt×VfmFReltnu𝑝𝑚v×mExtmvexnmeu1steymVRtmmVHtynmydhadhamAxtyzydzmyfmzhdomnmmdomnasranmSubsttemExtysmmVSubsttynmse=nyepvexmmVarste=pmVarstenme=npeyuexmmVarstefynmefy