Metamath Proof Explorer


Definition df-mdl

Description: Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mdl mMdl = t mFS | [˙ mUV t / u]˙ [˙ mEx t / x]˙ [˙ mVL t / v]˙ [˙ mEval t / n]˙ [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdl class mMdl
1 vt setvar t
2 cmfs class mFS
3 cmuv class mUV
4 1 cv setvar t
5 4 3 cfv class mUV t
6 vu setvar u
7 cmex class mEx
8 4 7 cfv class mEx t
9 vx setvar x
10 cmvl class mVL
11 4 10 cfv class mVL t
12 vv setvar v
13 cmevl class mEval
14 4 13 cfv class mEval t
15 vn setvar n
16 cmfsh class mFresh
17 4 16 cfv class mFresh t
18 vf setvar f
19 6 cv setvar u
20 cmtc class mTC
21 4 20 cfv class mTC t
22 cvv class V
23 21 22 cxp class mTC t × V
24 19 23 wss wff u mTC t × V
25 18 cv setvar f
26 cmfr class mFRel
27 4 26 cfv class mFRel t
28 25 27 wcel wff f mFRel t
29 15 cv setvar n
30 cpm class 𝑝𝑚
31 12 cv setvar v
32 31 8 cxp class v × mEx t
33 19 32 30 co class u 𝑝𝑚 v × mEx t
34 29 33 wcel wff n u 𝑝𝑚 v × mEx t
35 24 28 34 w3a wff u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t
36 vm setvar m
37 ve setvar e
38 9 cv setvar x
39 36 cv setvar m
40 37 cv setvar e
41 39 40 cop class m e
42 41 csn class m e
43 29 42 cima class n m e
44 c1st class 1 st
45 40 44 cfv class 1 st e
46 45 csn class 1 st e
47 19 46 cima class u 1 st e
48 43 47 wss wff n m e u 1 st e
49 48 37 38 wral wff e x n m e u 1 st e
50 vy setvar y
51 cmvar class mVR
52 4 51 cfv class mVR t
53 cmvh class mVH
54 4 53 cfv class mVH t
55 50 cv setvar y
56 55 54 cfv class mVH t y
57 39 56 cop class m mVH t y
58 55 39 cfv class m y
59 57 58 29 wbr wff m mVH t y n m y
60 59 50 52 wral wff y mVR t m mVH t y n m y
61 vd setvar d
62 vh setvar h
63 va setvar a
64 61 cv setvar d
65 62 cv setvar h
66 63 cv setvar a
67 64 65 66 cotp class d h a
68 cmax class mAx
69 4 68 cfv class mAx t
70 67 69 wcel wff d h a mAx t
71 vz setvar z
72 71 cv setvar z
73 55 72 64 wbr wff y d z
74 72 39 cfv class m z
75 58 74 25 wbr wff m y f m z
76 73 75 wi wff y d z m y f m z
77 76 71 wal wff z y d z m y f m z
78 77 50 wal wff y z y d z m y f m z
79 29 cdm class dom n
80 39 csn class m
81 79 80 cima class dom n m
82 65 81 wss wff h dom n m
83 78 82 wa wff y z y d z m y f m z h dom n m
84 39 66 79 wbr wff m dom n a
85 83 84 wi wff y z y d z m y f m z h dom n m m dom n a
86 70 85 wi wff d h a mAx t y z y d z m y f m z h dom n m m dom n a
87 86 63 wal wff a d h a mAx t y z y d z m y f m z h dom n m m dom n a
88 87 62 wal wff h a d h a mAx t y z y d z m y f m z h dom n m m dom n a
89 88 61 wal wff d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a
90 49 60 89 w3a wff e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a
91 vs setvar s
92 cmsub class mSubst
93 4 92 cfv class mSubst t
94 93 crn class ran mSubst t
95 91 cv setvar s
96 95 39 cop class s m
97 cmvsb class mVSubst
98 4 97 cfv class mVSubst t
99 96 55 98 wbr wff s m mVSubst t y
100 40 95 cfv class s e
101 39 100 cop class m s e
102 101 csn class m s e
103 29 102 cima class n m s e
104 55 40 cop class y e
105 104 csn class y e
106 29 105 cima class n y e
107 103 106 wceq wff n m s e = n y e
108 99 107 wi wff s m mVSubst t y n m s e = n y e
109 108 50 wal wff y s m mVSubst t y n m s e = n y e
110 109 37 8 wral wff e mEx t y s m mVSubst t y n m s e = n y e
111 110 91 94 wral wff s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e
112 vp setvar p
113 cmvrs class mVars
114 4 113 cfv class mVars t
115 40 114 cfv class mVars t e
116 39 115 cres class m mVars t e
117 112 cv setvar p
118 117 115 cres class p mVars t e
119 116 118 wceq wff m mVars t e = p mVars t e
120 117 40 cop class p e
121 120 csn class p e
122 29 121 cima class n p e
123 43 122 wceq wff n m e = n p e
124 119 123 wi wff m mVars t e = p mVars t e n m e = n p e
125 124 37 38 wral wff e x m mVars t e = p mVars t e n m e = n p e
126 125 112 31 wral wff p v e x m mVars t e = p mVars t e n m e = n p e
127 39 115 cima class m mVars t e
128 55 csn class y
129 25 128 cima class f y
130 127 129 wss wff m mVars t e f y
131 43 129 wss wff n m e f y
132 130 131 wi wff m mVars t e f y n m e f y
133 132 37 38 wral wff e x m mVars t e f y n m e f y
134 133 50 19 wral wff y u e x m mVars t e f y n m e f y
135 111 126 134 w3a wff s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
136 90 135 wa wff e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
137 136 36 31 wral wff m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
138 35 137 wa wff u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
139 138 18 17 wsbc wff [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
140 139 15 14 wsbc wff [˙ mEval t / n]˙ [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
141 140 12 11 wsbc wff [˙ mVL t / v]˙ [˙ mEval t / n]˙ [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
142 141 9 8 wsbc wff [˙ mEx t / x]˙ [˙ mVL t / v]˙ [˙ mEval t / n]˙ [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
143 142 6 5 wsbc wff [˙ mUV t / u]˙ [˙ mEx t / x]˙ [˙ mVL t / v]˙ [˙ mEval t / n]˙ [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
144 143 1 2 crab class t mFS | [˙ mUV t / u]˙ [˙ mEx t / x]˙ [˙ mVL t / v]˙ [˙ mEval t / n]˙ [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y
145 0 144 wceq wff mMdl = t mFS | [˙ mUV t / u]˙ [˙ mEx t / x]˙ [˙ mVL t / v]˙ [˙ mEval t / n]˙ [˙ mFresh t / f]˙ u mTC t × V f mFRel t n u 𝑝𝑚 v × mEx t m v e x n m e u 1 st e y mVR t m mVH t y n m y d h a d h a mAx t y z y d z m y f m z h dom n m m dom n a s ran mSubst t e mEx t y s m mVSubst t y n m s e = n y e p v e x m mVars t e = p mVars t e n m e = n p e y u e x m mVars t e f y n m e f y