Description: Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-mnt | Could not format assertion : No typesetting found for |- Monot = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmnt | Could not format Monot : No typesetting found for class Monot with typecode class | |
1 | vv | |
|
2 | cvv | |
|
3 | vw | |
|
4 | cbs | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | va | |
|
8 | vf | |
|
9 | 3 | cv | |
10 | 9 4 | cfv | |
11 | cmap | |
|
12 | 7 | cv | |
13 | 10 12 11 | co | |
14 | vx | |
|
15 | vy | |
|
16 | 14 | cv | |
17 | cple | |
|
18 | 5 17 | cfv | |
19 | 15 | cv | |
20 | 16 19 18 | wbr | |
21 | 8 | cv | |
22 | 16 21 | cfv | |
23 | 9 17 | cfv | |
24 | 19 21 | cfv | |
25 | 22 24 23 | wbr | |
26 | 20 25 | wi | |
27 | 26 15 12 | wral | |
28 | 27 14 12 | wral | |
29 | 28 8 13 | crab | |
30 | 7 6 29 | csb | |
31 | 1 3 2 2 30 | cmpo | |
32 | 0 31 | wceq | Could not format Monot = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) : No typesetting found for wff Monot = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) with typecode wff |