Metamath Proof Explorer


Definition df-nlm

Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion df-nlm NrmMod = w NrmGrp LMod | [˙ Scalar w / f]˙ f NrmRing x Base f y Base w norm w x w y = norm f x norm w y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnlm class NrmMod
1 vw setvar w
2 cngp class NrmGrp
3 clmod class LMod
4 2 3 cin class NrmGrp LMod
5 csca class Scalar
6 1 cv setvar w
7 6 5 cfv class Scalar w
8 vf setvar f
9 8 cv setvar f
10 cnrg class NrmRing
11 9 10 wcel wff f NrmRing
12 vx setvar x
13 cbs class Base
14 9 13 cfv class Base f
15 vy setvar y
16 6 13 cfv class Base w
17 cnm class norm
18 6 17 cfv class norm w
19 12 cv setvar x
20 cvsca class 𝑠
21 6 20 cfv class w
22 15 cv setvar y
23 19 22 21 co class x w y
24 23 18 cfv class norm w x w y
25 9 17 cfv class norm f
26 19 25 cfv class norm f x
27 cmul class ×
28 22 18 cfv class norm w y
29 26 28 27 co class norm f x norm w y
30 24 29 wceq wff norm w x w y = norm f x norm w y
31 30 15 16 wral wff y Base w norm w x w y = norm f x norm w y
32 31 12 14 wral wff x Base f y Base w norm w x w y = norm f x norm w y
33 11 32 wa wff f NrmRing x Base f y Base w norm w x w y = norm f x norm w y
34 33 8 7 wsbc wff [˙ Scalar w / f]˙ f NrmRing x Base f y Base w norm w x w y = norm f x norm w y
35 34 1 4 crab class w NrmGrp LMod | [˙ Scalar w / f]˙ f NrmRing x Base f y Base w norm w x w y = norm f x norm w y
36 0 35 wceq wff NrmMod = w NrmGrp LMod | [˙ Scalar w / f]˙ f NrmRing x Base f y Base w norm w x w y = norm f x norm w y