Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nlm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnlm | |
|
1 | vw | |
|
2 | cngp | |
|
3 | clmod | |
|
4 | 2 3 | cin | |
5 | csca | |
|
6 | 1 | cv | |
7 | 6 5 | cfv | |
8 | vf | |
|
9 | 8 | cv | |
10 | cnrg | |
|
11 | 9 10 | wcel | |
12 | vx | |
|
13 | cbs | |
|
14 | 9 13 | cfv | |
15 | vy | |
|
16 | 6 13 | cfv | |
17 | cnm | |
|
18 | 6 17 | cfv | |
19 | 12 | cv | |
20 | cvsca | |
|
21 | 6 20 | cfv | |
22 | 15 | cv | |
23 | 19 22 21 | co | |
24 | 23 18 | cfv | |
25 | 9 17 | cfv | |
26 | 19 25 | cfv | |
27 | cmul | |
|
28 | 22 18 | cfv | |
29 | 26 28 27 | co | |
30 | 24 29 | wceq | |
31 | 30 15 16 | wral | |
32 | 31 12 14 | wral | |
33 | 11 32 | wa | |
34 | 33 8 7 | wsbc | |
35 | 34 1 4 | crab | |
36 | 0 35 | wceq | |