Metamath Proof Explorer


Definition df-nlm

Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion df-nlm NrmMod=wNrmGrpLMod|[˙Scalarw/f]˙fNrmRingxBasefyBasewnormwxwy=normfxnormwy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnlm classNrmMod
1 vw setvarw
2 cngp classNrmGrp
3 clmod classLMod
4 2 3 cin classNrmGrpLMod
5 csca classScalar
6 1 cv setvarw
7 6 5 cfv classScalarw
8 vf setvarf
9 8 cv setvarf
10 cnrg classNrmRing
11 9 10 wcel wfffNrmRing
12 vx setvarx
13 cbs classBase
14 9 13 cfv classBasef
15 vy setvary
16 6 13 cfv classBasew
17 cnm classnorm
18 6 17 cfv classnormw
19 12 cv setvarx
20 cvsca class𝑠
21 6 20 cfv classw
22 15 cv setvary
23 19 22 21 co classxwy
24 23 18 cfv classnormwxwy
25 9 17 cfv classnormf
26 19 25 cfv classnormfx
27 cmul class×
28 22 18 cfv classnormwy
29 26 28 27 co classnormfxnormwy
30 24 29 wceq wffnormwxwy=normfxnormwy
31 30 15 16 wral wffyBasewnormwxwy=normfxnormwy
32 31 12 14 wral wffxBasefyBasewnormwxwy=normfxnormwy
33 11 32 wa wfffNrmRingxBasefyBasewnormwxwy=normfxnormwy
34 33 8 7 wsbc wff[˙Scalarw/f]˙fNrmRingxBasefyBasewnormwxwy=normfxnormwy
35 34 1 4 crab classwNrmGrpLMod|[˙Scalarw/f]˙fNrmRingxBasefyBasewnormwxwy=normfxnormwy
36 0 35 wceq wffNrmMod=wNrmGrpLMod|[˙Scalarw/f]˙fNrmRingxBasefyBasewnormwxwy=normfxnormwy