Metamath Proof Explorer


Definition df-psgn

Description: Define a function which takes the value 1 for even permutations and -u 1 for odd. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Assertion df-psgn pmSgn=dVxpBaseSymGrpd|dompIFinιs|wWordranpmTrspdx=SymGrpdws=1w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsgn classpmSgn
1 vd setvard
2 cvv classV
3 vx setvarx
4 vp setvarp
5 cbs classBase
6 csymg classSymGrp
7 1 cv setvard
8 7 6 cfv classSymGrpd
9 8 5 cfv classBaseSymGrpd
10 4 cv setvarp
11 cid classI
12 10 11 cdif classpI
13 12 cdm classdompI
14 cfn classFin
15 13 14 wcel wffdompIFin
16 15 4 9 crab classpBaseSymGrpd|dompIFin
17 vs setvars
18 vw setvarw
19 cpmtr classpmTrsp
20 7 19 cfv classpmTrspd
21 20 crn classranpmTrspd
22 21 cword classWordranpmTrspd
23 3 cv setvarx
24 cgsu classΣ𝑔
25 18 cv setvarw
26 8 25 24 co classSymGrpdw
27 23 26 wceq wffx=SymGrpdw
28 17 cv setvars
29 c1 class1
30 29 cneg class-1
31 cexp class^
32 chash class.
33 25 32 cfv classw
34 30 33 31 co class1w
35 28 34 wceq wffs=1w
36 27 35 wa wffx=SymGrpdws=1w
37 36 18 22 wrex wffwWordranpmTrspdx=SymGrpdws=1w
38 37 17 cio classιs|wWordranpmTrspdx=SymGrpdws=1w
39 3 16 38 cmpt classxpBaseSymGrpd|dompIFinιs|wWordranpmTrspdx=SymGrpdws=1w
40 1 2 39 cmpt classdVxpBaseSymGrpd|dompIFinιs|wWordranpmTrspdx=SymGrpdws=1w
41 0 40 wceq wffpmSgn=dVxpBaseSymGrpd|dompIFinιs|wWordranpmTrspdx=SymGrpdws=1w