Metamath Proof Explorer


Definition df-rmx

Description: Define the X sequence as the rational part of some solution of a special Pell equation. See frmx and rmxyval for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion df-rmx Xrm=a2,n1stb0×1stb+a212ndb-1a+a21n

Detailed syntax breakdown

Step Hyp Ref Expression
0 crmx classXrm
1 va setvara
2 cuz class
3 c2 class2
4 3 2 cfv class2
5 vn setvarn
6 cz class
7 c1st class1st
8 vb setvarb
9 cn0 class0
10 9 6 cxp class0×
11 8 cv setvarb
12 11 7 cfv class1stb
13 caddc class+
14 csqrt class
15 1 cv setvara
16 cexp class^
17 15 3 16 co classa2
18 cmin class
19 c1 class1
20 17 19 18 co classa21
21 20 14 cfv classa21
22 cmul class×
23 c2nd class2nd
24 11 23 cfv class2ndb
25 21 24 22 co classa212ndb
26 12 25 13 co class1stb+a212ndb
27 8 10 26 cmpt classb0×1stb+a212ndb
28 27 ccnv classb0×1stb+a212ndb-1
29 15 21 13 co classa+a21
30 5 cv setvarn
31 29 30 16 co classa+a21n
32 31 28 cfv classb0×1stb+a212ndb-1a+a21n
33 32 7 cfv class1stb0×1stb+a212ndb-1a+a21n
34 1 5 4 6 33 cmpo classa2,n1stb0×1stb+a212ndb-1a+a21n
35 0 34 wceq wffXrm=a2,n1stb0×1stb+a212ndb-1a+a21n