Metamath Proof Explorer


Definition df-rrn

Description: Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-rrn n=iFinxi,yikixkyk2

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrn classn
1 vi setvari
2 cfn classFin
3 vx setvarx
4 cr class
5 cmap class𝑚
6 1 cv setvari
7 4 6 5 co classi
8 vy setvary
9 csqrt class
10 vk setvark
11 3 cv setvarx
12 10 cv setvark
13 12 11 cfv classxk
14 cmin class
15 8 cv setvary
16 12 15 cfv classyk
17 13 16 14 co classxkyk
18 cexp class^
19 c2 class2
20 17 19 18 co classxkyk2
21 6 20 10 csu classkixkyk2
22 21 9 cfv classkixkyk2
23 3 8 7 7 22 cmpo classxi,yikixkyk2
24 1 2 23 cmpt classiFinxi,yikixkyk2
25 0 24 wceq wffn=iFinxi,yikixkyk2