Metamath Proof Explorer


Definition df-rrn

Description: Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-rrn n = i Fin x i , y i k i x k y k 2

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrn class n
1 vi setvar i
2 cfn class Fin
3 vx setvar x
4 cr class
5 cmap class 𝑚
6 1 cv setvar i
7 4 6 5 co class i
8 vy setvar y
9 csqrt class
10 vk setvar k
11 3 cv setvar x
12 10 cv setvar k
13 12 11 cfv class x k
14 cmin class
15 8 cv setvar y
16 12 15 cfv class y k
17 13 16 14 co class x k y k
18 cexp class ^
19 c2 class 2
20 17 19 18 co class x k y k 2
21 6 20 10 csu class k i x k y k 2
22 21 9 cfv class k i x k y k 2
23 3 8 7 7 22 cmpo class x i , y i k i x k y k 2
24 1 2 23 cmpt class i Fin x i , y i k i x k y k 2
25 0 24 wceq wff n = i Fin x i , y i k i x k y k 2