Metamath Proof Explorer


Definition df-upword

Description: Strictly increasing sequence is a sequence, adjacent elements of which increase. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion df-upword Could not format assertion : No typesetting found for |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cS classS
1 0 cupword Could not format UpWord S : No typesetting found for class UpWord S with typecode class
2 vw setvarw
3 2 cv setvarw
4 0 cword classWordS
5 3 4 wcel wffwWordS
6 vk setvark
7 cc0 class0
8 cfzo class..^
9 chash class.
10 3 9 cfv classw
11 cmin class
12 c1 class1
13 10 12 11 co classw1
14 7 13 8 co class0..^w1
15 6 cv setvark
16 15 3 cfv classwk
17 clt class<
18 caddc class+
19 15 12 18 co classk+1
20 19 3 cfv classwk+1
21 16 20 17 wbr wffwk<wk+1
22 21 6 14 wral wffk0..^w1wk<wk+1
23 5 22 wa wffwWordSk0..^w1wk<wk+1
24 23 2 cab classw|wWordSk0..^w1wk<wk+1
25 1 24 wceq Could not format UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } : No typesetting found for wff UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode wff