Metamath Proof Explorer


Theorem df1st2

Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion df1st2 xyz|z=x=1stV×V

Proof

Step Hyp Ref Expression
1 fo1st 1st:VontoV
2 fofn 1st:VontoV1stFnV
3 1 2 ax-mp 1stFnV
4 dffn5 1stFnV1st=wV1stw
5 3 4 mpbi 1st=wV1stw
6 mptv wV1stw=wz|z=1stw
7 5 6 eqtri 1st=wz|z=1stw
8 7 reseq1i 1stV×V=wz|z=1stwV×V
9 resopab wz|z=1stwV×V=wz|wV×Vz=1stw
10 vex xV
11 vex yV
12 10 11 op1std w=xy1stw=x
13 12 eqeq2d w=xyz=1stwz=x
14 13 dfoprab3 wz|wV×Vz=1stw=xyz|z=x
15 8 9 14 3eqtrri xyz|z=x=1stV×V