Metamath Proof Explorer


Theorem df2nd2

Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion df2nd2 xyz|z=y=2ndV×V

Proof

Step Hyp Ref Expression
1 fo2nd 2nd:VontoV
2 fofn 2nd:VontoV2ndFnV
3 1 2 ax-mp 2ndFnV
4 dffn5 2ndFnV2nd=wV2ndw
5 3 4 mpbi 2nd=wV2ndw
6 mptv wV2ndw=wz|z=2ndw
7 5 6 eqtri 2nd=wz|z=2ndw
8 7 reseq1i 2ndV×V=wz|z=2ndwV×V
9 resopab wz|z=2ndwV×V=wz|wV×Vz=2ndw
10 vex xV
11 vex yV
12 10 11 op2ndd w=xy2ndw=y
13 12 eqeq2d w=xyz=2ndwz=y
14 13 dfoprab3 wz|wV×Vz=2ndw=xyz|z=y
15 8 9 14 3eqtrri xyz|z=y=2ndV×V