Metamath Proof Explorer


Theorem df2ndres

Description: Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion df2ndres 2ndA×B=xA,yBy

Proof

Step Hyp Ref Expression
1 df2nd2 xyz|z=y=2ndV×V
2 1 reseq1i xyz|z=yA×B=2ndV×VA×B
3 resoprab xyz|z=yA×B=xyz|xAyBz=y
4 resres 2ndV×VA×B=2ndV×VA×B
5 incom A×BV×V=V×VA×B
6 xpss A×BV×V
7 df-ss A×BV×VA×BV×V=A×B
8 6 7 mpbi A×BV×V=A×B
9 5 8 eqtr3i V×VA×B=A×B
10 9 reseq2i 2ndV×VA×B=2ndA×B
11 4 10 eqtri 2ndV×VA×B=2ndA×B
12 2 3 11 3eqtr3ri 2ndA×B=xyz|xAyBz=y
13 df-mpo xA,yBy=xyz|xAyBz=y
14 12 13 eqtr4i 2ndA×B=xA,yBy