Metamath Proof Explorer


Theorem df2ndres

Description: Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion df2ndres 2 nd A × B = x A , y B y

Proof

Step Hyp Ref Expression
1 df2nd2 x y z | z = y = 2 nd V × V
2 1 reseq1i x y z | z = y A × B = 2 nd V × V A × B
3 resoprab x y z | z = y A × B = x y z | x A y B z = y
4 resres 2 nd V × V A × B = 2 nd V × V A × B
5 incom A × B V × V = V × V A × B
6 xpss A × B V × V
7 df-ss A × B V × V A × B V × V = A × B
8 6 7 mpbi A × B V × V = A × B
9 5 8 eqtr3i V × V A × B = A × B
10 9 reseq2i 2 nd V × V A × B = 2 nd A × B
11 4 10 eqtri 2 nd V × V A × B = 2 nd A × B
12 2 3 11 3eqtr3ri 2 nd A × B = x y z | x A y B z = y
13 df-mpo x A , y B y = x y z | x A y B z = y
14 12 13 eqtr4i 2 nd A × B = x A , y B y