Metamath Proof Explorer


Theorem dfac12a

Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion dfac12a CHOICExOn𝒫xdomcard

Proof

Step Hyp Ref Expression
1 ssv domcardV
2 eqss domcard=VdomcardVVdomcard
3 1 2 mpbiran domcard=VVdomcard
4 dfac10 CHOICEdomcard=V
5 unir1 R1On=V
6 5 sseq1i R1OndomcardVdomcard
7 3 4 6 3bitr4i CHOICER1Ondomcard
8 dfac12r xOn𝒫xdomcardR1Ondomcard
9 7 8 bitr4i CHOICExOn𝒫xdomcard