| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankwflemb |
|
| 2 |
|
harcl |
|
| 3 |
|
pweq |
|
| 4 |
3
|
eleq1d |
|
| 5 |
4
|
rspcv |
|
| 6 |
2 5
|
ax-mp |
|
| 7 |
|
cardid2 |
|
| 8 |
|
ensym |
|
| 9 |
|
bren |
|
| 10 |
|
simpr |
|
| 11 |
|
f1of1 |
|
| 12 |
11
|
adantr |
|
| 13 |
|
cardon |
|
| 14 |
13
|
onssi |
|
| 15 |
|
f1ss |
|
| 16 |
12 14 15
|
sylancl |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
suceq |
|
| 20 |
17 19
|
syl |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
id |
|
| 23 |
21 22
|
fveq12d |
|
| 24 |
18 23
|
oveq12d |
|
| 25 |
|
imaeq2 |
|
| 26 |
25
|
fveq2d |
|
| 27 |
24 26
|
ifeq12d |
|
| 28 |
27
|
cbvmptv |
|
| 29 |
|
dmeq |
|
| 30 |
29
|
fveq2d |
|
| 31 |
29
|
unieqd |
|
| 32 |
29 31
|
eqeq12d |
|
| 33 |
|
rneq |
|
| 34 |
33
|
unieqd |
|
| 35 |
34
|
rneqd |
|
| 36 |
35
|
unieqd |
|
| 37 |
|
suceq |
|
| 38 |
36 37
|
syl |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
fveq1 |
|
| 41 |
40
|
fveq1d |
|
| 42 |
39 41
|
oveq12d |
|
| 43 |
|
id |
|
| 44 |
43 31
|
fveq12d |
|
| 45 |
44
|
rneqd |
|
| 46 |
|
oieq2 |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
cnveqd |
|
| 49 |
48 44
|
coeq12d |
|
| 50 |
49
|
imaeq1d |
|
| 51 |
50
|
fveq2d |
|
| 52 |
32 42 51
|
ifbieq12d |
|
| 53 |
30 52
|
mpteq12dv |
|
| 54 |
28 53
|
eqtrid |
|
| 55 |
54
|
cbvmptv |
|
| 56 |
|
recseq |
|
| 57 |
55 56
|
ax-mp |
|
| 58 |
10 16 57
|
dfac12lem3 |
|
| 59 |
58
|
ex |
|
| 60 |
59
|
exlimiv |
|
| 61 |
9 60
|
sylbi |
|
| 62 |
6 7 8 61
|
4syl |
|
| 63 |
62
|
imp |
|
| 64 |
|
r1suc |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
eleq2d |
|
| 67 |
|
elpwi |
|
| 68 |
66 67
|
biimtrdi |
|
| 69 |
|
ssnum |
|
| 70 |
63 68 69
|
syl6an |
|
| 71 |
70
|
rexlimdva |
|
| 72 |
1 71
|
biimtrid |
|
| 73 |
72
|
ssrdv |
|
| 74 |
|
onwf |
|
| 75 |
74
|
sseli |
|
| 76 |
|
pwwf |
|
| 77 |
75 76
|
sylib |
|
| 78 |
|
ssel |
|
| 79 |
77 78
|
syl5 |
|
| 80 |
79
|
ralrimiv |
|
| 81 |
73 80
|
impbii |
|