Metamath Proof Explorer


Theorem dfaiota3

Description: Alternate definition of iota' : this is to df-aiota what dfiota4 is to df-iota . operation using the if operator. It is simpler than df-aiota and uses no dummy variables, so it would be the preferred definition if iota' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024)

Ref Expression
Assertion dfaiota3 ι = if ∃! x φ x | φ V

Proof

Step Hyp Ref Expression
1 aiotaint ∃! x φ ι = x | φ
2 aiotavb ¬ ∃! x φ ι = V
3 2 biimpi ¬ ∃! x φ ι = V
4 ifval ι = if ∃! x φ x | φ V ∃! x φ ι = x | φ ¬ ∃! x φ ι = V
5 1 3 4 mpbir2an ι = if ∃! x φ x | φ V